REPRESENTATIONS AND QUIVERS FOR RING THEORISTS

JUN-ICHI MIYACHI

Contents

1. Modules and Representations	1
2. Quivers and Path Algebras	5
3. Quivers with Relations	9
4. Base Extensions and Representations	13
5. Examples related to Tachikawa's Conjecture	15
5.1. The Case of Algebras	15
5.2. The Case of Rings	18
6. Appendix	20
References	23

1. Modules and Representations

Throughout this note, k is a field, and we deal with associative k-algebras. A k-algebra A is a k-vector space with a k-bilinear map $\mu : A \times A \to A$ satisfying

(1.1)
$$\begin{cases} 1_A \in A \\ \mu(1_A, a) = a \ (\forall a \in A) \\ \mu(a, 1_A) = a \ (\forall a \in A) \\ \mu \circ (\mu \times 1) = \mu \circ (1 \times \mu) \end{cases}$$
$$A \times A \times A \xrightarrow{\mu \times 1} A \times A \\ 1 \times \mu \downarrow \qquad \qquad \downarrow \mu \\ A \times A \xrightarrow{\mu} A \end{cases}$$

In this note, for a k-algebra A, we fix a complete set $\{e_i | 1 \le i \le n\}$ of orthogonal primitive idempotents of A. Then we have

$$A = \bigoplus_{1 \le i, j \le n} e_i A e_j$$

as a k-vector space and a family of k-bilinear maps

$$\mu_{ijk}: e_i A e_j \times e_j A e_k \to e_i A e_k$$

Date: December 2000.

This is a seminar note of which I gave a lecture at Yamaguchi University in December 2000.

such that

(1.2)
$$\begin{cases} e_i \in e_i A e_i(\forall i) \\ \mu_{iij}(e_i, a_{ij}) = a_{ij} \ (\forall a_{ij} \in e_i A e_j) \\ \mu_{ijj}(a_{ij}, e_j) = a_{ij} \ (\forall a_{ij} \in e_i A e_j) \\ \mu_{ikl} \circ (\mu_{ijk} \times \mathbf{1}) = \mu_{ijl} \circ (\mathbf{1} \times \mu_{jkl}) \end{cases}$$

$$\begin{array}{ccc} e_i A e_j \times e_j A e_k \times e_k A e_l & \xrightarrow{\mu_{ijk} \times \mathbf{1}} & e_i A e_k \times e_k A e_l \\ & & & \downarrow^{\mu_{ikl}} \\ & & & \downarrow^{\mu_{ikl}} \\ & & & e_i A e_j \times e_j A e_l & \xrightarrow{\mu_{ijl}} & e_i A e_l \end{array}$$

Conversely, a system $(e_iAe_j \ (1 \le i, j \le n); \mu_{ijk} \ (1 \le i, j, k \le n))$ of k-vector spaces satisfying the equation 1.2 defines a k-algebra $A = \bigoplus_{1 \le i, j \le n} e_iAe_j$ (in this case we define the other multiplications to be 0).

A (left) A-module M is a k -vector space with a k -bilinear map $\phi^M:A\times M\to M$ satisfying

As an equivalent notion, a representation M of A is a k-vector space with a k-algebra map $\psi: A \to \operatorname{End}_k(M)$, where $\operatorname{End}_k(M)$ is the k-vector space of k-linear endomaps of M.

For a complete set $\{e_i | 1 \leq i \leq n\}$ of orthogonal primitive idempotents of A, we have

$$M = \bigoplus_{1 \le i \le n} e_i M$$

as a k-vector space and a family of k-bilinear maps

$$\phi_{ji}^M: e_j A e_i \times e_i M \to e_j M$$

such that

(1.4)
$$\begin{cases} \phi_{ii}^{M}(e_{i},m_{i}) = m_{i} \ (^{\forall}m_{i} \in e_{i}M) \\ \phi_{kj}^{M} \circ (\mathbf{1} \times \phi_{ji}^{M}) = \phi_{ki}^{M} \circ (\mu_{kji} \times \mathbf{1}) \end{cases}$$

$$\begin{array}{ccc} e_k A e_j \times e_j A e_i \times e_i M & \xrightarrow{\mu_{kji} \times \mathbf{1}} & e_k A e_i \times e_i M \\ & & & & \downarrow \phi_{ji}^M \\ & & & & \downarrow \phi_{ki}^M \\ & & & e_k A e_j \times e_j M & \xrightarrow{\phi_{kj}^M} & e_k M \end{array}$$

 $\mathbf{2}$

As an equivalent notion, a family $(e_i M)_{1 \le i \le n}$ of k-vector spaces with k-linear maps $\psi_{ij}^M : e_i A e_j \to \operatorname{Hom}_k(e_j M, e_i M)$ such that

(1.5)
$$\begin{cases} \psi_{ii}^{M}(e_{i}) = \mathbf{1}_{e_{i}M} \\ \psi_{ik}^{M}(a_{ij}b_{jk}) = \psi_{ij}^{M}(a_{ij}) \circ \psi_{jk}^{M}(b_{jk}) \\ (^{\forall}a_{ij} \in e_{i}Ae_{j}, ^{\forall}b_{jk} \in e_{j}Ae_{k}) \end{cases}$$

where $\operatorname{Hom}_k(e_j M, e_i M)$ is the k-vector space of k-linear maps from $e_j M$ to $e_i M$.

Example 1.6. For a left A-module Ae_r , a family $(e_iAe_r)_{1 \leq i \leq n}$ with k-linear maps $\psi_{ij}^{Ae_r} : e_iAe_j \to \operatorname{Hom}_k(e_jAe_r, e_iAe_r)$ defined by $\psi_{ij}^{Ae_r}(a_{ij}) = \mu_{ijr}(a_{ij}, -)$.

$$e_j A e_r \xrightarrow{\mu_{ijr}(a_{ij}, -)} e_i A e_r \quad (a_{ij} \in e_i A e_j)$$

For representations M,N, an A-homomorphism $f:M\rightarrow N$ is a k-linear map satisfying

(1.7)
$$f \circ \psi^M(a) = \phi^N(a) \circ f \ (\forall a \in A)$$

$$\begin{array}{ccc} M & \stackrel{\psi^M(a)}{\longrightarrow} & M \\ f \downarrow & & \downarrow f \\ N & \stackrel{\psi^N(a)}{\longrightarrow} & N \end{array}$$

Then we have a family $(f_i: e_i M \to e_i N)_{1 \le i \le n}$ of k-linear maps satisfying

(1.8)
$$f_i \circ \psi_{ij}^M(a_{ij}) = \phi_{ij}^N(a_{ij}) \circ f_j \ (\forall a_{ij} \in e_i A e_j)$$

$$\begin{array}{ccc} e_{j}M & \xrightarrow{\psi_{ij}^{M}(a_{ij})} & e_{i}M \\ f_{j} \downarrow & & \downarrow f_{i} \\ e_{j}N & \xrightarrow{\phi_{ij}^{N}(a_{ij})} & e_{i}N \end{array}$$

Conversely, it is easy to see that a system $(e_i M \ (1 \le i \le n); \psi_{ij}^M \ (1 \le i, j \le n))$ of k-vector spaces defines a left A-module $M = \bigoplus_{1 \le i \le n} e_i M$ (in this case we define the other actions to be 0), and that a family $(f_i)_{1 \le i \le n}$ of k-linear maps defines an A-homomorphism from M to N.

n).

$$\begin{array}{ccc} e_{j}Ae_{s} & \xrightarrow{\mu_{ijs}(a_{ij},-)} & e_{i}Ae_{s} \\ \\ \mu_{jsr}(-,b_{sr}) & & & \downarrow \\ e_{j}Ae_{r} & \xrightarrow{\mu_{ijr}(a_{ij},-)} & e_{i}Ae_{r} \end{array}$$

Theorem 1.10. Let Rep A be the category consisting of $M = (M(i) \ (1 \le i \le n); \psi_{ij}^M (1 \le i, j \le n))$ satisfying

$$\psi_{ii}^{M}(e_{i}) = \mathbf{1}_{M(i)}$$

$$\psi_{ik}^{M}(a_{ij}b_{jk}) = \psi_{ij}^{M}(a_{ij}) \circ \psi_{jk}^{M}(b_{jk})$$

$$(^{\forall}a_{ij} \in e_{i}Ae_{j}, ^{\forall}b_{jk} \in e_{j}Ae_{k})$$

$$\begin{array}{c} M(k) \\ \psi_{jk}^{M}(b_{jk}) \\ M(j) \underbrace{\psi_{ik}^{M}(a_{ij}b_{jk})}_{\psi_{ij}^{M}(a_{ij})} e_{i}M(i) \end{array}$$

as objects, and of $(f_i : M(i) \to N(i))_{1 \le i \le n}$ satisfying $f_i \circ \psi_{ii}^M(a_{ij}) = \phi_{ij}^N(a_{ij}) \circ f_j$

$$\begin{array}{ccc} M(j) & \xrightarrow{\psi_{ij}^{M}(a_{ij})} & M(i) \\ f_{j} \downarrow & & \downarrow f_{i} \\ N(j) & \xrightarrow{\phi_{ij}^{N}(a_{ij})} & N(i) \end{array}$$

for M, N as morphisms. Then $\operatorname{Rep} A$ is equivalent to the category $\operatorname{Mod} A$ of left A-modules.

For A-modules M, N, we denote by $\operatorname{Hom}_A(M, N)$ the set of A-homomorphisms from M to N.

Lemma 1.11. For a left A-module M, we have

$$\operatorname{Hom}_A(Ae_i, M) \cong e_i M$$

as $e_i A e_i$ -modules.

Proof. Let θ : Hom_A(Ae_i, M) $\rightarrow e_i M$ be the map defined by $(f) = f(e_i)$ for $f \in$ Hom_A(Ae_i, M), and $\eta : e_i M \rightarrow$ Hom_A(Ae_i, M) the map defined by $\eta(m_i)(ae_i) =$ am_i for $m_i \in e_i M$ and $ae_i \in Ae_i$. Then θ, η are A-homomorphisms and $\theta\eta = 1$, $\eta\theta = 1$.

Corollary 1.12. Let J be the Jacobson radical of A. Assume that A is a basic artinian k-algebra, that is, $Ae_i \not\cong Ae_j$ for $i \neq j$. Then we have

$$\operatorname{Hom}_{A}(Ae_{i}, Ae_{j}/Je_{j}) \cong \begin{cases} e_{i}Ae_{i}/e_{i}Je_{i} & \text{if } i=j\\ O & \text{if } i\neq j \end{cases}$$

Proposition 1.13. Assume that A is a finite dimensional k-algebra satisfying $A/J \cong k \times \cdots \times k$ (i.e., $e_iAe_i/e_iJe_i \cong k$ for any $1 \le i \le n$). For a left A-module M, we have

 $\dim_k e_i M = \text{ the appearance number of simple type } Ae_i/Je_i$ in a composition series of M.

Proof. Let

$$O = M_{-1} \subset M_0 \subset M_1 \subset \cdots \subset M_r = M$$

be a composition series. Then we have an exact sequence

$$O \to \operatorname{Hom}_A(Ae_i, M_{t-1}) \to \operatorname{Hom}_A(Ae_i, M_t) \to \operatorname{Hom}_A(Ae_i, M_t/M_{t-1}) \to O$$

for $1 \leq t \leq r$. Therefore we have

$$\dim_k e_i M = \sum_{0 \le t \le r} \dim_k \operatorname{Hom}_A(Ae_i, M_t/M_{t-1}).$$

By Corollary 1.12, we get the statement.

Example 1.14. In the case of $A/J \cong k \times \cdots \times k$, we may assume that $A = (\bigoplus_{i=1}^{n} ke_i) \oplus J$. A simple left A-module Ae_r/Je_r is described by $(M(i); \psi_{ij}^M) \in \operatorname{Rep} A$ as follows.

$$M(i) = \begin{cases} k & \text{if } i = r \\ O & \text{if } i \neq r \end{cases}$$

$$\psi_{ij}^{M}(a_{ij}) = \begin{cases} \lambda & \text{if } (i,j) = (r,r), a_{ij} = \lambda e_r \\ 0 & \text{if } (i,j) = (r,r), a_{ij} \in e_r J e_r \\ 0 & \text{otherwise} \end{cases}$$

2. Quivers and Path Algebras

Definition 2.1. A quiver $\vec{Q} = (Q_0, Q_1)$ is an oriented graph, where Q_0 is a set of vertices and Q_1 is a set of arrows between vertices. We use $h : Q_1 \to Q_0$, $t : Q_1 \to Q_0$ the maps defined by $h(\alpha) = j$, $t(\alpha) = i$ when $\alpha : i \to j$ is arrow from the vertex *i* to the vertex *j*. A quiver $\vec{Q} = (Q_0, Q_1)$ is called a finite quiver if $\#Q_0, \#Q_1 < \infty$.

A path $w = (i|\alpha_r, \ldots, \alpha_1|j)$ from the vertex j to the vertex i in the quiver Q is a sequence of ordered arrows $\alpha_1, \ldots, \alpha_r$ such that $j = t(\alpha_1), h(\alpha_i) = t(\alpha_{i+1})$ $(1 \le i \le r-1), h(\alpha_r) = i$. In this case, j (resp., i) is called the tail t(w) (resp., the head h(w)) of w, and r is called the length of a path w. For every vertex i, the path $e_i = (i|i)$ of length 0 is called the empty path. A non-empty path w is called an oriented cycle if h(w) = t(w).

Definition 2.2. Let $Q_0 = \{1, \ldots, n\}$ and Q_1 a set. For any $i, j \in Q_0$, $e_i |\vec{Q}| e_j$ is the set of paths w in \vec{Q} with t(w) = j, h(w) = i. For any $i, j, k \in Q_0$ with $e_i |\vec{Q}| e_j \neq \phi$, $e_j |\vec{Q}| e_k \neq \phi$, we define a composition map $\mu_{ijk} : e_i |\vec{Q}| e_j \times e_j |\vec{Q}| e_k \rightarrow e_i |\vec{Q}| e_k$ by setting

$$\mu_{ijk}((i|\alpha_s,\ldots,\alpha_{r+1}|j),(j|\alpha_r,\ldots,\alpha_1|k))=(i|\alpha_s,\ldots,\alpha_1|k).$$

Then for any $i, j, k, l \in Q_0$ with $e_i |\vec{Q}| e_j \neq \phi, e_j |\vec{Q}| e_k \neq \phi, e_k |\vec{Q}| e_l \neq \phi$, we have

We denote by $e_i k \vec{Q} e_j$ the k-vector space with the paths from the vertex j to ias a basis if $e_i |\vec{Q}| e_j \neq \phi$, and $e_i k \vec{Q} e_j = O$ if $e_i |\vec{Q}| e_j = \phi$. For any $i, j, k \in Q_0$, we define a k-bilinear map $\mu_{ijk} : e_i k \vec{Q} e_j \times e_j k \vec{Q} e_k \rightarrow e_i k \vec{Q} e_k$ by setting

$$\mu_{ijk}(\lambda_v v, \lambda_w w) = \lambda_v \lambda_w v w$$

with $\lambda_v, \lambda_w \in k$. For any $i, j, k, l \in Q_0$, we have

Then, by 1.2, $k\vec{Q} = \bigoplus_{1 \le i,j \le n} e_i k\vec{Q}e_j$ becomes an associative k-algebra. This algebra is called the path algebra of \vec{Q} over k.

We often simply write $\alpha_r, \ldots, \alpha_1$ for $(i | \alpha_r, \ldots, \alpha_1 | j)$.

Proposition 2.3. For a finite quiver \vec{Q} , $k\vec{Q}$ is a finite dimensional k-algebra if and only if \vec{Q} has no oriented cycle.

Example 2.4. For a quiver

$$\vec{Q}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

we have

$$\begin{array}{ll} e_1 k \vec{Q} e_1 = < e_1 >_k & e_2 k \vec{Q} e_1 = < \alpha >_k & e_3 k \vec{Q} e_1 = < \beta \alpha >_k \\ e_1 k \vec{Q} e_2 = O & e_2 k \vec{Q} e_2 = < e_2 >_k & e_3 k \vec{Q} e_2 = < \beta >_k \\ e_1 k \vec{Q} e_3 = O & e_2 k \vec{Q} e_3 = O & e_3 k \vec{Q} e_3 = < e_3 >_k \end{array}$$

Then we have

$$k\vec{Q} \cong \begin{bmatrix} k & 0 & 0 \\ k & k & 0 \\ k & k & k \end{bmatrix}$$

Example 2.5. For a quiver

$$\vec{Q}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\gamma} 3$$

we have

$$\begin{array}{ll} e_{1}k\vec{Q}e_{1}=< e_{1}>_{k} & e_{2}k\vec{Q}e_{1}=<\alpha,\beta>_{k} & e_{3}k\vec{Q}e_{1}=<\gamma\alpha,\gamma\beta>_{k} \\ e_{1}k\vec{Q}e_{2}=O & e_{2}k\vec{Q}e_{2}=< e_{2}>_{k} & e_{3}k\vec{Q}e_{2}=<\gamma>_{k} \\ e_{1}k\vec{Q}e_{3}=O & e_{2}k\vec{Q}e_{3}=O & e_{3}k\vec{Q}e_{3}=< e_{3}>_{k} \end{array}$$

Then we have

$$k\vec{Q} \cong \begin{bmatrix} k & O\\ AM_k & A \end{bmatrix}, \quad A = \begin{bmatrix} k & 0\\ k & k \end{bmatrix}, \quad AM = \begin{bmatrix} k\\ k \end{bmatrix} \oplus \begin{bmatrix} k\\ k \end{bmatrix}$$

Example 2.6. For a quiver

$$\vec{Q}: 1 \xrightarrow{\alpha} 2 \bigcirc \beta$$

we have

$$e_1 k \vec{Q} e_1 = \langle e_1 \rangle_k \quad e_2 k \vec{Q} e_1 = \langle \alpha, \beta^n \alpha : n \in \mathbb{N} \rangle_k$$
$$e_1 k \vec{Q} e_2 = O \qquad e_2 k \vec{Q} e_2 = \langle e_2, \beta^n : n \in \mathbb{N} \rangle_k$$

Then we have

$$k\vec{Q} \cong \begin{bmatrix} k & 0\\ k[x] & k[x] \end{bmatrix}$$

Lemma 2.7. Let A be a ring, $O \to X \to Y \to Z \to O$ an exact sequence of left A-modules. Then we have

 $\operatorname{pdim}_A Y \leq \max\{\operatorname{pdim}_A X, \operatorname{pdim}_A Z\}$

Proposition 2.8. For a finite dimensional k-algebra A, the following are equivalent.

1. lgldim $A \leq n$.

2. $\operatorname{pdim}_A A/J \leq n$.

In particular, the following are equivalent.

- 1. A is hereditary.
- 2. J is projective.
- 3. lgldim $A \leq 1$.
- 4. pdim_A $A/J \leq 1$.

Proposition 2.9. Let \vec{Q} be a finite quiver without oriented cycles. Then $k\vec{Q}$ is hereditary, and $k\vec{Q}/J_{k\vec{Q}} \cong k \times \cdots \times k$, where $J_{k\vec{Q}}$ is the Jacobson radical of $k\vec{Q}$.

Proof. Let $Q_0 = 1, \ldots, n$, then $1 = e_1 + \ldots + e_n$. Let J_+ be the vector space spanned by paths of length ≥ 1 , then there exists $t \geq 0$ such that $J_+^{t+1} = 0$. Therefore $J_+ \subset J_{k\vec{Q}}$. It is easy to see that $k\vec{Q}/J_+ \cong ke_1 \times \cdots \times ke_n$ as rings. Thus we have $J_+ = J_{k\vec{Q}}$. For $i \in Q_0$, since \vec{Q} is finite, we may assume that the set of arrows α with $t(\alpha) = i$ is $\{\alpha_1, \ldots, \alpha_r\}$. Then we have

$$J_{+}e_{i} = \bigoplus_{i=1}^{r} k \vec{Q} \alpha_{i}.$$

Since $\mu(-, \alpha_j) : k\vec{Q}e_{h(\alpha_i)} \to k\vec{Q}$ is an isomorphism, $J_{k\vec{Q}}e_i$ is a projective left $k\vec{Q}$ -module, and hence $J_{k\vec{Q}}$ is a projective left $k\vec{Q}$ -module.

Definition 2.10. Given a quiver $\vec{Q} = (Q_0, Q_1)$, a representation $M = (M(i); \psi^M)$ of \vec{Q} over a field k is a family $(M(i))_{i \in Q_0}$ of k-vector spaces together with a family $(\mathcal{U}(\alpha) : M(j) \to M(i))_{j \xrightarrow{\alpha} i \in Q_1}$ of k-linear maps. A representation $M = (M(i); \psi^M)$ is called a finite dimensional representation if M(i) is a finite dimensional k-vector space for every $i \in Q_0$. For $(M(i); \psi^M), (N(i); \psi^N)$, a morphism $f: (M(i); \psi^M) \to (N(i); \psi^N)$ is a family $(f_i: M(i) \to N(i))_{i \in Q_0}$ of k-linear maps satisfying that we have a commutative diagram

$$\begin{array}{ccc} M(j) & \stackrel{\psi^M(\alpha)}{\longrightarrow} & M(i) \\ f_j & & & & \downarrow f_i \\ N(j) & \stackrel{\psi^N(\alpha)}{\longrightarrow} & N(i) \end{array}$$

for any $j \xrightarrow{\alpha} i \in Q_1$.

We denote by $\operatorname{\mathsf{Rep}}_k \vec{Q}$ (resp., $\operatorname{\mathsf{rep}}_k \vec{Q}$) the category of representations (resp., finite dimensional representations) of \vec{Q} over k.

Theorem 2.11. For a finite quiver \vec{Q} , $\operatorname{Rep}_k \vec{Q}$ is equivalent to $\operatorname{Rep} k\vec{Q}$, and hence it is equivalent to $\operatorname{Mod} k\vec{Q}$. Moreover, $\operatorname{rep}_k \vec{Q}$ is equivalent to the category $\operatorname{mod}_{\operatorname{fd}} k\vec{Q}$ of finite dimensional left $k\vec{Q}$ -modules.

Sketch of The Proof. For any idempotents e_i, e_j of $k\vec{Q}$, all elements of $e_ik\vec{Q}e_j$ are k-linear combinations of paths from j to i. Then it is easy.

Proposition 2.12. For any collection $\{(M_{\lambda}; \psi^{M_{\lambda}})\}_{\lambda \in \Lambda}$ of representations of \vec{Q} over k, $(\bigoplus_{\lambda \in \Lambda} M_{\lambda}; \bigoplus_{\lambda \in \Lambda} \psi^{M_{\lambda}})$ (resp., $(\prod_{\lambda \in \Lambda} M_{\lambda}; \prod_{\lambda \in \Lambda} \psi^{M_{\lambda}}))$ is the direct sum (resp., the direct product) of $\{(M_{\lambda}; \psi^{M_{\lambda}})\}_{\lambda \in \Lambda}$.

Example 2.13. For a quiver

$$\vec{Q}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

 $k\vec{Q} = \langle e_1, e_2, e_3, \alpha, \beta, \beta \alpha \rangle_k$. A representation M of \vec{Q} over k is the following

$$M(1) \xrightarrow{\psi^M(\alpha)} M(2) \xrightarrow{\psi^M(\beta)} M(3)$$

Then we define $M = M(1) \oplus M(2) \oplus M(3)$ to be a left A-module as follows. For $m = (m_1, m_2, m_3) \in M$ and $a = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_{\alpha} \alpha + \lambda_{\beta} \beta + \lambda_{\beta \alpha} \beta \alpha \in k \vec{Q}$, we define

$$am = (\lambda_1 m_1, \lambda_2 m_2 + \lambda_\alpha \psi^M(\alpha)(m_1), \lambda_3 m_3 + \lambda_\beta \psi^M(\beta)(m_2) + \lambda_{\beta\alpha} \psi^M(\beta) \psi^M(\alpha)(m_1))$$

By the standard technique of linear algebra, all indecomposable representations are up to isomorphisms the following

It is easy to see that we have composition series of M_3 and M_5

$$M_{1}: O \longrightarrow O \longrightarrow k$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad M_{4}: O \longrightarrow k \longrightarrow O$$

$$M_{2}: O \longrightarrow k \longrightarrow k \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$M_{3}: k \longrightarrow k \longrightarrow k$$

Then $M_1 \cong k \vec{Q} e_3/J e_3, M_2/M_1 \cong k \vec{Q} e_2/J e_2, M_3/M_2 \cong k \vec{Q} e_1/J e_1$, and $M_4 \cong k \vec{Q} e_2/J e_2, M_5/M_4 \cong k \vec{Q} e_1/J e_1$, where J is the Jacobson radical of $k \vec{Q}$. Moreover, $k \vec{Q} e_1 \cong M_3, J e_3 \cong J M_3 \cong k \vec{Q} e_2 \cong M_2$ and $J e_2 \cong J M_2 \cong k \vec{Q} e_3 \cong M_1$.

We often write modules by using composition series

$$M_1: \ 3 \quad M_2: \ \begin{array}{ccc} 2 \\ \beta \\ 3 \end{array} \quad M_3: \ \begin{array}{ccc} 1 \\ 2 \\ \beta \\ \beta \\ 3 \end{array} \quad M_4: \ 2 \quad M_5: \ \begin{array}{ccc} 1 \\ \alpha \\ 2 \end{array} \quad M_6: \ 1$$

3. Quivers with Relations

Definition 3.1. A relation σ on a quiver \vec{Q} over a field k is a k-linear combinations $\sigma = \sum_{t=1}^{r} \lambda_t w_t$, where w are paths from j to i, $\lambda_t \in k$. A pair (\vec{Q}, ρ) is called a quiver with relations over k if $\rho = \{\sigma_1, \ldots, \sigma_s\}$ where σ_i is a relation for every i. We denote $k(\vec{Q}, \rho) = k\vec{Q}/\langle \rho \rangle$, where $\langle \rho \rangle$ is the two-sided ideal of $k\vec{Q}$ generated by relations of ρ . We denote by J_+ the two-sided ideal of $k\vec{Q}$ generated by arrows.

Proposition 3.2. Let (\vec{Q}, ρ) be a finite quiver with relations over k. If there is t such that $J_{+}^{t} \subset \langle \rho \rangle \subset J_{+}^{2}$, then $\overline{J}_{+} = rad(k(\vec{Q}, \rho))$, where \overline{J}_{+} is the image of J_{+} in $k(\vec{Q}, \rho)$.

Proof. Let $A = k(\vec{Q}, \rho)$ and $J = rad(k(\vec{Q}, \rho))$. Since $\overline{J}_{+}^{t} = O$, we have $\overline{J}_{+} \subset J$. It is clearly that $A/\overline{J}_{+} \cong k\vec{Q}/J_{+}$ is semi-simple. Then $(J + \overline{J}_{+})/\overline{J}_{+} = O$, and hence $\overline{J}_{+} \subset J$.

Definition 3.3. For a quiver with relations (\vec{Q}, ρ) over k, $\operatorname{\mathsf{Rep}}_k(\vec{Q}, \rho)$ (resp., $\operatorname{\mathsf{rep}}_k(\vec{Q}, \rho)$) is the full subcategory of $\operatorname{\mathsf{Rep}}_k \vec{Q}$ (resp., $\operatorname{\mathsf{rep}}_k \vec{Q}$) consisting objects $M = (M(i); \psi^M)$ with $\psi^M(\sigma) = 0$ for any relation σ of ρ . Here $\psi^M(w) = \psi^M(\alpha_r) \dots \psi^M(\alpha_1)$ for $w = \alpha_r \dots \alpha_1$, and $\psi^M(\sigma) = \Sigma_t \lambda_t \psi^M(w_t)$ for $\sigma = \Sigma_t \lambda_t w_t$.

Theorem 3.4. For a finite quiver with relations (\vec{Q}, ρ) over k, $\operatorname{Rep}_k(\vec{Q}, \rho)$ (resp., $\operatorname{rep}_k(\vec{Q}, \rho)$) is equivalent to $\operatorname{Mod} k(\vec{Q}, \rho)$ (resp., $\operatorname{mod}_{\operatorname{fd}} k(\vec{Q}, \rho)$).

Sketch. According to Theorem 2.11 and the explanations before the theorem, $\psi^M(\sigma) = 0$ means that $\sigma M = O$ when we consider $M = \bigoplus_{i \in Q_0} M(i)$ as a left $k \vec{Q}$ -module.

Definition 3.5. For a quiver \vec{Q} , the opposite quiver \vec{Q}^{op} is the quiver with all arrows reversed. For a quiver with relations (\vec{Q}, ρ) over k, $(\vec{Q}^{\text{op}}, \rho^{\text{op}})$ is similarly defined. Then $k(\vec{Q}, \rho)^{\text{op}} = k(\vec{Q}^{\text{op}}, \rho^{\text{op}})$.

Let D = Hom_k(-, k). For a representation $M = (M(i); \psi^M) \in \operatorname{Rep}_k(\vec{Q}, \rho)$, D $M = (D M(i); \psi^{D M})$, where $\psi^{D M}(\alpha) = D \psi^M(\alpha)$. Then D M is a representation of $(\vec{Q}^{\operatorname{op}}, \rho^{\operatorname{op}})$ over k.

Proposition 3.6. For a quiver with relations (\vec{Q}, ρ) over k, D induces a duality between $\operatorname{rep}_k(\vec{Q}, \rho)$ and $\operatorname{rep}_k(\vec{Q}^{\operatorname{op}}, \rho^{\operatorname{op}})$.

Remark 3.7. For a k-algebra A, idempotents e_i, e_j and $a_{ij} \in e_i A e_j$, we have a left A-homomorphism $\mu(-, a_{ij}) : A e_i \to A e_j$. Then we have a commutative diagram in

 $\operatorname{\mathsf{Mod}}\nolimits A^{\operatorname{op}}$

In $\operatorname{\mathsf{Rep}}_k \vec{Q}$, we have also the same result.

Example 3.8. For a quiver

$$\vec{Q}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

with a relation $\rho = \beta \alpha$. Then $k\vec{Q} = \langle e_1, e_2, e_3, \alpha, \beta, \beta \alpha \rangle_k$ and the ideal $\langle \rho \rangle = \langle \beta \alpha \rangle_k$. Therefore $k(\vec{Q}, \rho) = \langle \overline{e_1}, \overline{e_2}, \overline{e_3}, \overline{\alpha}, \overline{\beta} \rangle_k$. Let $A = k(\vec{Q}, \rho)$, then we have

$$\begin{array}{ll} \overline{e}_1 A \overline{e}_1 = < \overline{e}_1 >_k & \overline{e}_2 A \overline{e}_1 = < \overline{\alpha} >_k & \overline{e}_3 A \overline{e}_1 = O \\ \overline{e}_1 A \overline{e}_2 = O & \overline{e}_2 A \overline{e}_2 = < \overline{e}_2 >_k & \overline{e}_3 A \overline{e}_2 = < \overline{\beta} >_k \\ \overline{e}_1 A \overline{e}_3 = O & \overline{e}_2 A \overline{e}_3 = O & \overline{e}_3 A \overline{e}_3 = < \overline{e}_3 >_k \end{array}$$

Since this algebra is a factor of the path algebra in Example 2.13, all indecomposable representations are up to isomorphisms the following

$$\begin{array}{lll} M_1: \ O \to O \to k & M_2: \ O \to k \to k \\ M_4: \ O \to k \to O & M_5: \ k \to k \to O & M_6: \ k \to O \to O \end{array}$$

The opposite quiver of with relations $(\vec{Q}^{\text{op}}, \rho^{\text{op}})$ is

$$\vec{Q}^{\mathrm{op}}: 1 \stackrel{\alpha^{\mathrm{op}}}{\longleftarrow} 2 \stackrel{\beta^{\mathrm{op}}}{\longleftarrow} 3$$

with $\rho^{\rm op} = \alpha^{\rm op} \beta^{\rm op}$. Therefore we have

$$Ae_3 = Ae_3/Je_3 \cong M_1 \quad Ae_2 \cong D(e_3A) \cong M_2$$
$$Ae_2/Je_2 \cong M_4 \qquad Ae_1 \cong D(e_2A) \cong M_5 \quad D(e_1A) \cong Ae_1/Je_1 \cong M_6$$

$$M_1: 3 \quad M_2: \begin{array}{ccc} 2 & M_4: 2 & M_5: \end{array} \begin{array}{ccc} 1 & M_6: 1 \\ 3 & M_4: \end{array}$$

Since projective resolutions of $Ae_1/Je_1, Ae_2/Je_2, Ae_3/Je_3$ are

$$O \longrightarrow Ae_{3} \longrightarrow Ae_{2} \longrightarrow Ae_{1} \longrightarrow Ae_{1}/Je_{1} \longrightarrow O$$

$$O \longrightarrow 3 \longrightarrow |_{\beta}^{2} \longrightarrow |_{\alpha}^{2} \longrightarrow 1 \longrightarrow O$$

$$O \longrightarrow Ae_{3} \longrightarrow Ae_{2} \longrightarrow Ae_{2}/Je_{2} \longrightarrow O$$

$$O \longrightarrow 3 \longrightarrow |_{\beta}^{2} \longrightarrow 2 \longrightarrow O$$

$$O \longrightarrow Ae_{3} \longrightarrow Ae_{3} \longrightarrow O$$

$$O \longrightarrow Ae_{3} \longrightarrow Ae_{3} \longrightarrow O$$

$$O \longrightarrow 3 \longrightarrow |_{\beta}^{2} \longrightarrow O$$

by Proposition 2.8, lgldim $k(\vec{Q}, \rho) = 2$. Moreover, an injective resolution of $_AA$ is

$$O \longrightarrow {}_{A}A \longrightarrow D(e_{2}A) \oplus D(e_{3}A)^{2} \longrightarrow D(e_{2}A) \longrightarrow D(e_{1}A) \longrightarrow O$$

Since $\operatorname{pdim}_A \mathcal{D}(e_2 A) = \operatorname{pdim}_A \mathcal{D}(e_3 A) = 0$ and $\operatorname{pdim}_A \mathcal{D}(e_1 A) = 2$, A is an Auslander regular k-algebra.

Example 3.9. For a quiver

$$\vec{Q}: 1 \xrightarrow[\beta]{\alpha} 2$$

with a relation $\rho = \{\beta \alpha\}$. Then

$$k\vec{Q}=_k$$
 and the ideal

$$<\rho>=<(\beta\alpha)^h, (\alpha\beta)^{l+1}, \alpha(\beta\alpha)^m, \beta(\alpha\beta)^n: h, l, m, n \in \mathbb{N} >_k.$$

Therefore $k(Q, \rho) = \langle \overline{e}_1, \overline{e}_2, \overline{e}_3, \overline{\alpha}, \overline{\beta}, \overline{\alpha}\overline{\beta} \rangle_k$. Let $A = k(Q, \rho)$, then we have

$$\overline{e}_1 A \overline{e}_1 = \langle \overline{e}_1 \rangle_k \quad \overline{e}_2 A \overline{e}_1 = \langle \overline{\alpha} \rangle_k$$
$$\overline{e}_1 A \overline{e}_2 = \langle \overline{\beta} \rangle_k \quad \overline{e}_2 A \overline{e}_2 = \langle \overline{e}_2, \overline{\alpha \beta} \rangle_k$$

The opposite quiver of with relations $(\vec{Q}^{\mathrm{op}},\rho^{\mathrm{op}})$ is

$$\vec{Q}^{\mathrm{op}}: 1 \xrightarrow{\underline{\alpha}^{\mathrm{op}}} 2$$

with a relation $\rho^{\text{op}} = \{\alpha^{\text{op}}\beta^{\text{op}}\}$. Hence we have

$$Ae_{1}: \begin{array}{c} \stackrel{1}{\underset{2}{\alpha}}: k \xrightarrow{1} k & Ae_{2} \cong D(e_{2}A): \begin{array}{c} \stackrel{2}{\underset{1}{\beta}}: k \xrightarrow{\left[\begin{array}{c} 0 \\ 1 \\ \end{array} \right]} \\ \stackrel{1}{\underset{2}{\beta}}: k \xrightarrow{0} k \\ \hline \\ D(e_{1}A): \begin{array}{c} \stackrel{2}{\underset{1}{\beta}}: k \xrightarrow{0} \\ \stackrel{1}{\underset{1}{\ldots}} k \\ \hline \\ Ae_{1}/Je_{1}: 1: k \xrightarrow{0} \\ \hline \\ 0 \end{array} O \quad Ae_{2}/Je_{2}: 2: O \xrightarrow{0} \\ \hline \\ 0 \end{array} k$$

Since projective resolutions of $Ae_1/Je_1, Ae_2/Je_2$ are

by Proposition 2.8, lgldim A = 2. A projective resolution of $D(e_1A)$ is

Moreover, an injective resolution of $_AA$ is

$$O \longrightarrow {}_{A}A \longrightarrow D(e_{2}A)^{2} \longrightarrow D(e_{2}A) \longrightarrow D(e_{1}A) \longrightarrow O$$

Since $\operatorname{pdim}_A\operatorname{D}(e_2A)=0$ and $\operatorname{pdim}_A\operatorname{D}(e_1A)=2,\ A$ is an Auslander regular k -algebra.

JUN-ICHI MIYACHI

Definition 3.10. Let Λ be a ring, and V a Λ -bimodule. We denote by $V^{\otimes n} = \prod_{n \text{ times}}^{n \text{ times}}$

 $V \otimes_{\Lambda} \cdots \otimes_{\Lambda} V$. Then the tensor ring $T(\Lambda, V)$ is $\Lambda \oplus (\bigoplus_{n \ge 1} V^{\otimes n})$ as an abelian group, and its multiplication is induced by the canonical Λ -bilinear maps $V^{\otimes m} \otimes_{\Lambda} V^{\otimes n} \to V^{\otimes m+n}$ for $m, n \ge 0$.

Lemma 3.11. Let Λ be a ring, V a Λ -bimodule and A a Λ -algebra. For a Λ -bimodule homomorphism $f : V \to A$, there exists a unique Λ -algebra homomorphism $\tilde{f} : T(\Lambda, V) \to A$ such that $\tilde{f}|_V = f$.

Sketch of The Proof. Let $\phi : \Lambda \to A$ be a ring homomorphism. A map $f : T(\Lambda, V) \to A$ is defined by

$$\tilde{f}(a_0 + \sum_{i \ge 1} \sum_j v_{i1j} \otimes \cdots \otimes v_{iij}) = \phi(a_0) + \sum_{i \ge 1} \sum_j f(v_{i1j}) \dots f(v_{iij})$$

for $a_0 + \sum_{i \ge 1} \sum_j v_{i1j} \otimes \cdots \otimes v_{iij} \in T(\Lambda, V)$. Then this satisfies the desired property.

Definition 3.12. For a k-algebra $\Lambda = \prod_{i=1}^{n} k$ and Λ -bimodule V, the quiver $\vec{Q}_{T(\Lambda,V)}$ of $T(\Lambda,V)$ consists of $Q_{T(\Lambda,V)0} = \{1,\ldots,n\}$, and of the number of arrows from the vertex i to j which is dim_k $e_j V e_i$, where e_i, e_j correspond to i, j.

For a finite dimensional k-algebra A with $A/J_A \cong \prod_{i=1}^n k$, the quiver \vec{Q}_A is the quiver $\vec{Q}_{T(A/J_A, J_A/J_A^2)}$.

Proposition 3.13. For a k-algebra $\Lambda = \prod_{i=1}^{n} k$ and Λ -bimodule V, there is a kalgebra isomorphism $\phi : T(\Lambda, V) \to k \vec{Q}_{T(\Lambda, V)}$.

Proof. Since $k\vec{Q} = (\bigoplus_{i=1}^{n} \lambda_i e_i) \oplus J_+$, we identify the idempotents of A/J with them of $k\vec{Q}$. For $1 \leq i, j \leq n$, we take a k-basis $\{v_{ijk} | 1 \leq k \leq n_{ij}\}$ of $e_i V e_j$, and denote by $\alpha_{v_{ijk}}$ the arrow in $k\vec{Q}_{T(\Lambda,V)}$ corresponding to v_{ijk} . A map $\phi : T(\Lambda, V) \to A$ is defined by

$$\phi(\sum_{i=1}^n \lambda_i e_i + \sum_{i \ge 1, j} \lambda_{ij} u_{i1j} \otimes \dots \otimes u_{iij}) = \sum_{i=1}^n \lambda_i e_i + \sum_{i \ge 1, j} \lambda_{ij} \alpha_{u_{i1j}} \dots \alpha_{u_{iij}}$$

for $\sum_{i=1}^{n} \lambda_i e_i + \sum_{i \ge 1, j} \lambda_{ij} u_{i1j} \otimes \cdots \otimes u_{iij} \in T(\Lambda, V)$, where u_{ijk} are elements of the above basis. It is easy to see that $\dim_k e_i(\bigoplus_{n\ge 1} V^{\otimes n})e_j = e_i k \vec{Q} e_j$. Hence ϕ is bijective.

Theorem 3.14. Let A be a finite dimensional k-algebra with $A/J_A \cong \prod_{i=1}^n k$. Then the following hold.

- 1. There is a surjective ring homomorphism $\phi : \operatorname{T}(A/J_A, J_A/J_A^2) \to A$ such that $\coprod_{i \ge \operatorname{rl}(A)} (J_A/J_A^2)^i \subset \operatorname{Ker} \phi \subset (J_A/J_A^2)^2$, where $\operatorname{rl}(A)$ is the Loewy length of A (*i.e.* $\operatorname{rl} A = \min\{t | J_A^{t+1} = 0\}$).
- 2. $A \cong k(\vec{Q}, \rho)$ with $J_A^r \subset \langle \rho \rangle \subset J_A^2$ for some r, where $\vec{Q} = \vec{Q}_A$.

Proof. 1. By the assumption, we may assume that a split injective k-algebra homomorphism $\phi_0: A/J \to A, A/J = \bigoplus_{i=1}^n ke_i$ and $A = A/J \oplus J$ with $J = J_A$ the Jacobson radical of A. For any e_i, e_j , we choose elements $r_{ij1}, \ldots, r_{ijn_{ij}}$ of $e_i J e_j$ such that $\{\overline{r}_{ij1}, \ldots, \overline{r}_{ijn_{ij}}\}$ is a k-basis of $e_i(J/J^2)e_j$. Let $\phi_1: J/J^2 \to A$ be an A/J-bimodule homomorphism defined by $\phi_1(\overline{r}_{ijk}) = r_{ijk}$, then by Lemma 3.11, there exists an

A/J-algebra homomorphism $\phi : \operatorname{T}(A/J, J/J^2) \to A$ such that $\tilde{\phi}|_{A/J \oplus J/J^2} = \phi_0 \oplus \phi_1$ is injective. Therefore $\coprod_{i \geq \mathrm{rl}(A)} (J_A/J_A^2)^i \subset \operatorname{Ker} \phi \subset (J_A/J_A^2)^2$, because of $J^{t+1} = 0$ for $t = \mathrm{rl}(A)$. If $\mathrm{rl}(A) = 1$, then ϕ is clearly bijective. In order to prove that ϕ is surjective, it suffices to show that for any $m \geq 1$ and any $x \in J^m$, there exists $y \in (\phi(J/J^2))^m$ such that $x - y \in J^{m+1}$. In the case of m = 1, it is trivial. In the case of $m \geq 2$, for $x \in J^m$ we have $x = \sum_i v_i w_i$, where $v_i \in J$ and $w_i \in J^{m-1}$. Then there are $y_i \in \phi(J/J^2)$ and $z_i \in (\phi(J/J^2))^{m-1}$ such that $v_i - y_i \in J^2$ and $w_i - z_i \in J^m$. Since $v_i \in J$ and $z_i \in J^{m-1}$, $v_i w_i - y_i z_i = v_i (w_i - z_i) + (v_i - y_i) z_i \in J^{m+1}$ and hence $x - \sum_i y_i z_i \in J^{m+1}$. 2. According to Proposition 3.13, we have a surjective k-algebra homomorphism

2. According to Proposition 3.13, we have a surjective k-algebra homomorphism $\phi : k\vec{Q} \to A$, where $\vec{Q} = \vec{Q}_A$. Let t = rl(A) + 1, then ϕ induces a surjective k-algebra homomorphism $\psi : k\vec{Q}/J_+^t \to A$. Since $k\vec{Q}/J_+^t$ is a finite dimensional k-algebra, Ker ψ is a finitely generated ideal. Hence Ker ϕ is a finitely generated ideal $< \sigma_1, \ldots, \sigma_s > \text{of } k\vec{Q}$, because J_+^t is a finitely generated ideal of $k\vec{Q}$. Since $\sigma_h = \sum_{ij} e_i \sigma_h e_j$, there is a set ρ of relations such that Ker $\phi = < \rho >$.

Lemma 3.15. Let A be a hereditary finite dimensional k-algebra, I a two-sided ideal of A with $I \subset J_A^2$. Then A/I is not hereditary.

Proof. Consider the exact sequence in Mod A/I

$$O \to I/IJ_A \to J_A/IJ_A \xrightarrow{\pi} J_A/I \to O.$$

By Nakayama's Lemma, $I/IJ_A \neq O$. Since J_A is A-projective, J_A/IJ_A is A/I-projective. $I \subset J_A^2$ implies $I/IJ_A \subset J_A^2/IJ_A = J_{A/I}(J_A/IJ_A)$, If J_A/I is A/I-projective, then there is $\eta : J_A/I \to J_A/IJ_A$ such that $\pi\eta = 1_{J_A/I}$, and then $J_{A/I}(J_A/IJ_A) \oplus \operatorname{Im} \eta = J_A/IJ_A$. By Nakayama's Lemma, $\operatorname{Im} \eta = J_A/IJ_A$ and $I/IJ_A = O$. This is a contradiction. Hence J_A/I is not A/I-projective. By Proposition 2.8, we get the statement.

Proposition 3.16. Let A be a finite dimensional k-algebra with $A/J_A \cong k \times \cdots \times k$. Then the following are equivalent.

1. A is hereditary. 2. $A \cong k \vec{Q}_A$.

Proof. $1 \Rightarrow 2$. Let $f : Ae_i \to Ae_j$ be a non-zero A-homomorphism for primitive idempotents i, j. If f is not an isomorphism, then f is a monomorphism, because Im f is projective. Then there is no path $Ae_{i_1} \to \cdots \to Ae_{i_n} = Ae_{i_1}$ of non-zero A-homomorphisms which are not isomorphisms. Hence \vec{Q} has no oriented cycle, $k\vec{Q}$ is a finite dimensional k- algebra. By Lemma 3.15, $A \cong k\vec{Q}_A$.

 $2 \Rightarrow 1$. By Proposition 2.9, it is trivial.

4. Base Extensions and Representations

Let k be a field and R a k-algebra. For a quiver with relations (\vec{Q}, ρ) over a field k, let e_1, \ldots, e_n be the set of idempotents corresponding to vertices in \vec{Q} , $A = k(\vec{Q}, \rho)$ and $A^R = R \otimes_k k(\vec{Q}, \rho)$. Then we can consider that $A^R = \bigoplus_{\text{path } w} R\overline{w}$ and $r\overline{w} = \overline{w}r$ for any $r \in R$ and any path w in \vec{Q} .

A left A^R -module M is a left A-module, and it is a direct sum $\bigoplus_{i=1}^n e_i M$ as an *R*-module. For any $\alpha \in Q_1$, we have

$$\alpha(rm) = (\alpha r)m$$
$$= (r\alpha)m$$
$$= r(\alpha m)$$

with $r \in R$, $m \in M$. Then $\psi^M(\alpha) : e_j M \to e_i M$ is a left *R*-linear map, and we get a system $(e_i M; \psi^M)$ of left *R*-modules satisfying

- 1. $e_i M$ is a left *R*-module for any *i*.
- 2. $\psi^M(\alpha)$ is a left *R*-linear map for any $\alpha \in Q_1$.
- 3. $\psi^M(\sigma) = 0$ for any relation $\sigma \in \rho$.

For a left A^R -homomorphism $f: M \to N$, we get left R-linear maps $e_i f = f_i$: $e_i M \to e_i N \ (1 \le i \le n)$ such that

(4.1)
$$f_i \circ \psi^M(\alpha) = \psi^N(\alpha) \circ f_j$$

for any $\alpha \in Q_1$.

$$\begin{array}{ccc} e_{j}M & \xrightarrow{\psi^{M}(\alpha)} & e_{i}M \\ f_{j} & & & \downarrow f_{i} \\ e_{j}N & \xrightarrow{\psi^{N}(\alpha)} & e_{i}N \end{array}$$

Theorem 4.2. Let $A = k(\vec{Q}, \rho)$, and let $\operatorname{Rep}_{R/k}(\vec{Q}, \rho)$ be the category consisting of $M = (M(i) \ (1 \le i \le n); \psi^M(\alpha)(\alpha \in Q_1))$ satisfying

- 1. M(i) is a left R-module for any *i*. 2. $\psi^M(\alpha)$ is a left R-linear map for any $\alpha \in Q_1$. 3. $\psi^M(\sigma) = 0$ for any relation $\sigma \in \rho$.

as objects, and of $(f_i : M(i) \to N(i))_{1 \le i \le n}$ satisfying

$$\begin{split} f_i \circ \psi^M(\alpha) &= \phi^N(\alpha) \circ f_j \\ M(j) \xrightarrow{\psi^M(\alpha)} & M(i) \\ f_j \downarrow & \qquad \qquad \downarrow f_i \\ N(j) \xrightarrow{\phi^N(\alpha)} & N(i) \end{split}$$

for M, N as morphisms. Then $\operatorname{Rep}_{R/k}(\vec{Q}, \rho)$ is equivalent to the category $\operatorname{Mod} A^R$ of left A^R -modules.

Sketch of The Proof. By the above, we can construct a functor from $\operatorname{Mod} A^R$ to $\operatorname{\mathsf{Rep}}_{R/k}(\vec{Q},\rho)$. Conversely, given $M = (M(i);\psi^M) \in \operatorname{\mathsf{Rep}}_{R/k}(\vec{Q},\rho)$, let $M = \bigoplus_{i=1}^n M(i)$. For any $r \in R$, any arrow $\alpha : i \to j$ and $m \in M(i)$, we define the left A^R -action

$$(r\alpha)m = r\psi^M(\alpha)(m)$$

Then for any $r, s \in R$, any arrow $\alpha : i \to j, \beta : j \to l$ and $m \in M(i)$, we have

$$(s\beta)((r\alpha)m) = (s\beta)(r\psi^{M}(\alpha)(m))$$

= $(s \ \mathcal{W}(\beta))(r\psi^{M}(\alpha)(m))$
= $s(r\psi^{M}(\beta) \ (\ \mathcal{W}(\alpha)(m)))$
= $sr(\ \mathcal{W}(\beta) \ \mathcal{W}(\alpha))(m))$
= $(sr\beta\alpha)(m)$

Therefore M becomes a left A^R -module. For a family $(f_i : M(i) \to N(i))_{1 \le i \le n}$ of morphisms, let $f = \bigoplus_{i=1}^n f_i$. For any $r \in R$, any arrow $\alpha : i \to j$ and $m \in M(i)$, we have

$$f_j(r\alpha m) = f_j(r\psi^M(\alpha)(m))$$

= $r(f_j \circ \psi^M(\alpha))(m)$
= $r(-\psi(\alpha) \circ f_i)(m)$
= $(r\alpha)f_i(m)$

Hence f becomes a left A^R -homomorphism. It is easy to see that this construction defines a functor from $\operatorname{Rep}_{R/k}(\vec{Q},\rho)$ to $\operatorname{Mod} A^R$, and it is an equivalence. \Box

5. Examples related to Tachikawa's Conjecture

Conjecture 5.1 (Nakayama's Conjecture). Let A be a finite dimensional algebra over a field k, and

$$O \to {}_AA \to I^0 \to I^1 \to \dots$$

an injective resolution of a left A-module ${}_{A}A$. If all I^{i} are projective, then A is self-injective.

Tachikawa showed that the above conjecture is equivalent to the pair of the following two conjectures.

Conjecture 5.2 (Tachikawa's Conjectures). Let A be a finite dimensional algebra over a field k, M a finitely generated left A-module.

- 1. If A is self-injective and $\operatorname{Ext}_{A}^{i}(M, M) = O$ for all $i \geq 1$, then M is projective.
- 2. If $\operatorname{Ext}_A^i(\operatorname{D} A, A) = O$ for all $i \ge 1$, then A is self-injective.

R. Schultz showed that 1 of Conjecture 5.2 is not true in the case of A being an artinian ring [Sc]. I introduce his examples here.

5.1. The Case of Algebras. For a quiver

$$\vec{Q}$$
: $x \bigcap 1 \bigcap y$

with relations $\rho = \{yx - \delta xy, x^2, y^2\}$ where $\delta \in k^{\times}$. Then

 $k \vec{Q} = {\rm the}$ free $k{\rm -algebra}\ k < x, y >$

and the ideal

$$<\rho>=k < x, y > (yx - \delta xy)k < x, y > +$$

 $k < x, y > x^{2}k < x, y > +k < x, y > y^{2}k < x, y >$

JUN-ICHI MIYACHI

Therefore $k(\vec{Q}, \rho) = < 1, \alpha, \beta, \alpha\beta >_k$ is a local k-algebra, where $\alpha = \overline{x}, \beta = \overline{y}$. The multiplication of $k(\vec{Q}, \rho)$ is

$$(a1 + b_1\alpha + b_2\beta + c\alpha\beta)(a'1 + b'_1\alpha + b'_2\beta + c'\alpha\beta) = aa'1 + (ab'_1 + a'b_1)\alpha + (ab'_2 + a'b_1)\beta + (ac' + a'c + b_1b'_2 + \delta b_2b'_1)\alpha\beta$$

with $a, b_1, b_2, c, a', b'_1, b'_2, c' \in k$. Then we have

Since it is easy to see that A has the simple socle, A is self-injective. Indeed, $DA = \langle D1, D\alpha, D\beta, D(\alpha\beta) \rangle_k$

(We calculate the action as follows. $(\alpha D(\alpha\beta))(\beta) = D(\alpha\beta)(\beta\alpha) = D(\alpha\beta)(\delta\alpha\beta)$ $= \delta$ implies $\alpha D(\alpha\beta) = \delta D\beta$. Then every isomorphism from $_AA$ to $_ADA$ is the $\begin{bmatrix} a & 0 & 0 & 0 \\ b & \delta a & 0 & 0 \\ c & 0 & a & 0 \\ d & c & b & a \end{bmatrix} \text{ with } a \in k^{\times}.$ form $\operatorname{rm} \begin{bmatrix} b & \delta a & 0 & 0 \\ c & 0 & a & 0 \\ d & c & b & a \end{bmatrix} \text{ with } a \in k^{\times}.$ On the other hand, the opposite quiver with relations $(\vec{Q}^{\operatorname{op}}, \rho^{\operatorname{op}})$ is

$$\vec{Q}^{\mathrm{op}}: x^{\mathrm{op}} \bigcirc 1 \bigcirc y^{\mathrm{op}}$$

with relations $\rho^{\text{op}} = \{x^{\text{op}}y^{\text{op}} - \delta y^{\text{op}}x^{\text{op}}, (x^{\text{op}})^2, (y^{\text{op}})^2\}$. A_A, DA_A are the following

(Here, -- means the right action). Then every isomorphism from A_A to $\mathbf{D}A_A$ is the form $\begin{bmatrix} a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & 0 & \delta a & 0 \\ d & c & b & a \end{bmatrix}$ with $a \in k^{\times}$. If $\delta = 1$, then $A \cong \mathbf{D}A$ as A-bimodules and A is a symmetric k-algebra. Otherwise, $A \ncong \mathbf{D}A$ as A-bimodules and A is not a symmetric k-algebra. For n, let $M_n = A(\alpha + (-\delta)^n \beta)$

$$\begin{bmatrix} 0 & 0 \\ (-\delta)^n & 0 \end{bmatrix} \bigcirc k^2 \bigcirc \begin{bmatrix} 0 & 0 \\ \delta & 0 \end{bmatrix}$$

Then we have an exact sequence

$$O \longrightarrow A(\alpha + (-\delta)^{n-1}\beta) \longrightarrow A \longrightarrow A(\alpha + (-\delta)^n\beta) \longrightarrow O$$
$$O \longrightarrow M_{n-1} \longrightarrow A \longrightarrow M_n \longrightarrow O$$

for each $n \in \mathbb{Z}$, and

(5.3)
$$\operatorname{Hom}_{A}(M_{n}, A) = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ a(-\delta)^{n} & 0 \\ b & a \end{bmatrix} | a, b \in k \right\}$$
$$\operatorname{Hom}_{A}(M_{m}, M_{n}) = \left\{ \begin{bmatrix} a & 0 \\ b & a \end{bmatrix} | (-\delta)^{m} a = (-\delta)^{n} a, a, b \in k \right\}$$

And we have an exact sequence

$$O \longrightarrow \operatorname{Hom}_A(M_0, M_i) \longrightarrow \operatorname{Hom}_A(M_0, A) \longrightarrow$$

$$\operatorname{Hom}_{A}(M_{0}, M_{i+1}) \longrightarrow \operatorname{Ext}_{A}^{1}(M_{0}, M_{i}) \longrightarrow O$$

for $i \geq 1$. If $-\delta$ is not a root of 1, then by the equation 5.3 we have

$$\dim_{k} \operatorname{Ext}_{A}^{1}(M_{0}, M_{0}) = \dim_{k} \operatorname{Hom}_{A}(M_{0}, M_{1}) - \dim_{k} \operatorname{Hom}_{A}(M_{0}, A) + \dim_{k} \operatorname{Hom}_{A}(M_{0}, M_{0}) = 1 - 2 + 2 = 1$$

$$(5.4) \quad \dim_{k} \operatorname{Ext}_{A}^{i}(M_{0}, M_{0}) = \dim_{k} \operatorname{Ext}_{A}^{1}(M_{0}, M_{i-1}) = \dim_{k} \operatorname{Hom}_{A}(M_{0}, M_{i+1}) - \dim_{k} \operatorname{Hom}_{A}(M_{0}, A) + \dim_{k} \operatorname{Hom}_{A}(M_{0}, M_{i-1}) = 1 - 2 + 1 = 0 \qquad \text{for } i \geq 2$$

Proposition 5.5. Assume that $-\delta$ is not a root of 1. Let $M = A(\alpha + \beta)$, then we have $\operatorname{Ext}_{A}^{i}(M, M) = O$ for all $i \geq 2$.

Proposition 5.6. Assume that $-\delta$ is not a root of 1. Let $M = A(\alpha + \beta)$, and $\cdots \to A \to A \to M \to O$ a minimal projective resolution, then all syzygy Amodules $\Omega^n M$ have k-dimension 2, and they are non-isomorphic each other.

5.2. The Case of Rings. Let $A = k(\vec{Q}, \rho)$ be a finite dimensional k-algebra given in §5.1. Let K be a skew field which is a k-algebra, and $B = A^{K}$. Then $\operatorname{Hom}_{K}(K-, KK)$ and $\operatorname{Hom}_{K}(-K, KK)$ induce a duality between $\operatorname{rep}_{K/k}(\vec{Q}, \rho)$ and $\operatorname{rep}_{K/k}(\vec{Q}^{\operatorname{op}}, \rho^{\operatorname{op}})$. Hence B is a local self-injective artinian ring. According to Theorem 4.2, $\operatorname{\mathsf{Mod}} B$ is is equivalent to $\operatorname{\mathsf{Rep}}_{R/k}(\vec{Q},\rho)$. For a representation M= $(M, \psi^M), \psi^M(\alpha)$ is a left K-linear map for any arrow α . Then ψ^M is represented by the set of the right multiplications of matrices of K, and their matrix compositions are the opposite compositions of maps (i.e. we take row vectors as elements of K-vector spaces in this subsection). Therefore by taking the transpose of matrices in ${}_{A}A$ of §5.1, we have a representation ${}_{B}B$ in $\operatorname{Rep}_{R/k}(\hat{Q},\rho)$

For $\lambda \in K^{\times}$, let $M_{\lambda} = B(\alpha + \lambda\beta)$, then M is represented by

$$\begin{bmatrix} 0 & \lambda \\ 0 & 0 \end{bmatrix} \bigoplus K^2 \bigoplus \begin{bmatrix} 0 & \delta \\ 0 & 0 \end{bmatrix}$$

Lemma 5.7. The following hold.

- 1. $\operatorname{Hom}_B(M_{\lambda}, M_{\mu}) = \{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | \lambda a = a\mu, a, b \in K \}$ 2. $\operatorname{Hom}_B(M_{\lambda}, B) = \{ \begin{bmatrix} 0 & a & \lambda a & b \\ 0 & 0 & 0 & a \end{bmatrix} | a, b \in K \}$

Lemma 5.8. For $n \in \mathbb{Z}$, $\lambda \in K^{\times}$ and $\delta \in k^{\times}$, we have an exact sequence

$$O \to M_{\lambda(-\delta)^n} \xrightarrow{\eta_n} B \xrightarrow{\theta_{n+1}} M_{\lambda(-\delta)^{n+1}} \to O$$

where $\eta_n = \begin{bmatrix} 0 & 1 & \lambda(-\delta)^n & 0 \\ 0 & 0 & 1 \end{bmatrix}$, and $\theta_{n+1} = \begin{bmatrix} 1 & 0 \\ 0 & \lambda(-\delta)^{n+1} \\ 0 & \delta \\ 0 \end{bmatrix}$.

Proposition 5.9. If $\delta \in k^{\times}$ and $\lambda \in K^{\times}$ satisfy

(i) λ and $\lambda(-\delta)^n$ are not conjugate in K^{\times} for $n \geq 1$,

(ii) for any $n \ge 0$ and any $b \in K$, there exists $a \in K$ such that $\lambda a - a\lambda(-\delta)^n = b$, then $\operatorname{Ext}^{i}_{B}(M_{\lambda}, M_{\lambda}) = 0$ for any $i \geq 1$, and $\operatorname{End}_{B}(M_{\lambda})$ is neither left artinian nor right artinian.

Proof. By Lemma 5.8, for $n \ge 0$, we have an exact sequence

$$O \to M_{\lambda(-\delta)^n} \xrightarrow{\eta_n} B \xrightarrow{\theta_{n+1}} M_{\lambda(-\delta)^{n+1}} \to O.$$

Then in order to prove the first part, it suffices to show that

$$O \to \operatorname{Hom}_B(M_{\lambda}, M_{\lambda(-\delta)^n}) \xrightarrow[\operatorname{Hom}_B(M_{\lambda}, \eta_n)]{} \operatorname{Hom}_B(M_{\lambda}, \theta_n) \xrightarrow[\operatorname{Hom}_B(M_{\lambda}, \theta_{n+1})]{} \operatorname{Hom}_B(M_{\lambda}, M_{\lambda(-\delta)^{n+1}}) \to O.$$

is an exact sequence for $n \ge 0$. By Lemma 5.7 1 and assumption 1 , we have

$$\operatorname{Hom}_{B}(M_{\lambda}, M_{\lambda(-\delta)^{n+1}}) = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | \lambda a = a\lambda(-\delta)^{n+1}, a, b \in K \right\}$$
$$= \left\{ \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} | b \in K \right\}$$

According to Lemma 5.7 2, we have

Im Hom_B(
$$M_{\lambda}, \theta_{n+1}$$
) = $\left\{ \begin{bmatrix} 0 & \lambda a \delta + a \lambda (-\delta)^{n+1} \\ 0 & 0 \end{bmatrix} | a \in K \right\}$

By assumption 2, there exists $a \in K$ such that $\lambda a - a\lambda(-\delta)^n = b\delta^{-1}$. For the second part, by Lemma 5.7 1, we have

$$\operatorname{End}_B(M_{\lambda}) = \{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | \lambda a = a\lambda, a, b \in K \}$$

Let $\partial_{\lambda} : K \to K$ be a map defined by $\partial_{\lambda}(a) = \lambda a - a\lambda$ for $a \in K$. Then ∂_{λ} is an additive group homomorphism and $F = \operatorname{Ker} \partial_{\lambda}$ is a skew subfield. For any $s \in F$, $a \in K$, we have

$$\partial_{\lambda}(sa) = \lambda sa - sa\lambda$$

= $s\lambda a - sa\lambda$
= $s\partial_{\lambda}(a)$

Therefore K is a left F-vector space and ∂_{λ} is a left F-linear map. Similarly K is a right F-vector space and ∂_{λ} is a right F-linear map. We have $\dim_F K = \dim K_F = \infty$, because $O \to F \to K \xrightarrow{\partial_{\lambda}} K \to O$ is exact. It is easy to see $\operatorname{End}_B(M_{\lambda}) \cong F \ltimes K$ (this is a trivial extension of F by K).

Proposition 5.10. There are a skew field K, its commutative subfield $k, \lambda \in K^{\times}$ and $\delta \in k^{\times}$ such that K is a k-algebra and that they satisfy the conditions (i) and (ii) of Proposition 5.9.

Proof. According to [Co1] or [Co2] Section 8, there are a skew field L and $\lambda \in L$ such that the inner derivation $\partial_{\lambda} : L \to L$ is surjective. Let K be the skew field $L\{X\}$ of formal Laurant polynomials, and $\delta = -X$. For $0 \neq f = \sum_{i} \nu_i X^i \in K$, we denote by $\deg_{min} f = \min\{i | \nu_i \neq 0\}$. Then $\deg_{min} f^{-1} = -\deg_{min} f$. Therefore λ and λX^n are not conjugate for $n \geq 1$, because $\deg_{min} \lambda \neq \deg_{min} \lambda X^n$. Let $\partial_{\lambda,n} : K \to K$ be the map defined by $\partial_{\lambda,n}(a) = \lambda a - a\lambda X^n$. Let $g = \sum_i \nu_i X^i \in K$. In the case n = 0, there is $\mu_i \in L$ such that $\lambda \mu_i - \mu_i \lambda = \nu_i$. Let $f = \sum_i \mu_i X^i$, then $\partial_{\lambda,0}(f) = g$. In the case $n \geq 1$, $f = \sum_{i=1}^{\infty} \lambda^{-i} g \lambda^{i-1} X^{n(i-1)}$. Hence we have

$$\lambda f - f\lambda X^n = \sum_{i=1}^{\infty} \lambda^{-i+1} g\lambda^{i-1} X^{n(i-1)} - \sum_{i=1}^{\infty} \lambda^{-i} g\lambda^i X^{ni}$$
$$= g.$$

We take k = the center Z(K) of K. Then k satisfies the desired property, because of $X \in Z(K)$.

JUN-ICHI MIYACHI

6. Appendix

In this section, we recall some properties of homological algebra without proofs. The reader see e.g. [Ro] for details.

Definition 6.1 (Category). We define a *category* C by the following data:

- 1. A class $Ob \mathcal{C}$ of elements called objects of \mathcal{C} .
- 2. For a ordered pair (X, Y) of objects a set $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ of morphisms is given such that $\operatorname{Hom}_{\mathcal{C}}(X, Y) \cap \operatorname{Hom}_{\mathcal{C}}(X', Y') = \phi$ for $(X, Y) \neq (X', Y')$ (an element f of $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is called a morphism, and denote by $f : X \to Y$).
- 3. For each triple (X, Y, Z) of objects of \mathcal{C} a map

 $\theta(X, Y, Z) : \operatorname{Hom}_{\mathcal{C}}(X, Y) \times \operatorname{Hom}_{\mathcal{C}}(Y, Z) \to \operatorname{Hom}_{\mathcal{C}}(X, Z)$

- $(\theta \text{ is called the composition map})$ is given.
- 4. The composition map θ is associative.
- 5. For each object X of C, there is a morphism $1_X : X \to X$ such that for any $g: Y \to X, h: X \to Z$ we have $1_X g = g, h 1_X = h$.

Definition 6.2 (Complex). A diagram $X^{\bullet} : \ldots \to X^{i-1} \xrightarrow{d^{i-1}} X^i \xrightarrow{d^i} X^{i+1} \to \ldots$ is called a (*cochain*) *complex* if $d^{i+1}d^i = 0$ for all *i*, that is, $\operatorname{Im} d^{i-1} \subset \operatorname{Ker} d^i$ for all *i*. A complex X^{\bullet} is called *exact* if $\operatorname{Im} d^{i-1} = \operatorname{Ker} d^i$ for all *i*. Sometimes, we call an exact sequence for an exact complex. For a complex X^{\bullet} , $\operatorname{H}^n(X^{\bullet}) = \operatorname{Ker} d^n / \operatorname{Im} d^n$ is called the *n*-th *cohomology*.

Lemma 6.3. Let $O \to V_0 \to V_1 \to \ldots \to V_n \to O$ be an exact sequence of k-vector spaces. Then we have

$$\dim_k V_0 = \sum_{i=1}^n (-1)^i \dim_k V_i.$$

Definition 6.4. For $f : X \to Y$ in Mod A, $\operatorname{Hom}_A(X,Y) =$ the set of left Alinear maps from X to Y. For $M \in \operatorname{Mod} A$, we have the following additive group homomorphisms

$$\operatorname{Hom}_{A}(M, X) \xrightarrow{\operatorname{Hom}_{A}(M, f)} \operatorname{Hom}_{A}(M, Y)(g \mapsto f \circ g)$$
$$\operatorname{Hom}_{A}(Y, M) \xrightarrow{\operatorname{Hom}_{A}(M, f)} \operatorname{Hom}_{A}(X, M)(h \mapsto h \circ f).$$

Definition 6.5 (Projective, Injective Module). A left A-module M is called Aprojective if for any surjective A-linear map $X \to Y$ we have a surjective additive group homomorphism $\operatorname{Hom}_A(M, X) \xrightarrow{\operatorname{Hom}_A(M, f)} \operatorname{Hom}_A(M, Y)$. Similarly, a left Amodule M is called A-injective if for any injective A-linear map $X \to Y$ we have a surjective additive group homomorphism $\operatorname{Hom}_A(Y, M) \xrightarrow{\operatorname{Hom}_A(M, f)} \operatorname{Hom}_A(X, M)$.

Proposition 6.6. A left A-module A is A-projective. In the case of A being a finite dimensional k-algebra, DA is a injective left A-module.

Proposition 6.7. For a left A-module M, the following hold.

- 1. *M* is A-projective if and only if any surjective A-linear map $f : X \to M$ splits (i.e. there exists $g : M \to X$ such that $gf = 1_M$).
- 2. *M* is A-injective if and only if any injective A-linear map $f : M \to Y$ splits (i.e. there exists $g : Y \to M$ such that $fg = 1_M$).

Proposition 6.8. For a left A-module M, the following hold.

1. There exists a set I and $f: A^{(I)} \to M$ such that f is surjective.

Definition 6.9 (Projective, Injective Resolution). For a left A-module M, according to Proposition 6.8, we have a surjective A-linear map $\epsilon_0 : P_0 \to M$ with P_0 being A-projective. For Ker ϵ_0 , we have a surjective A-linear map $\epsilon_1 : P_1 \to \text{Ker } \epsilon_0$ with P_1 being A-projective. Therefore we have an exact complex

$$\dots \to P_n \to \dots \to P_1 \to P_0 \to M \to O,$$

with P_i being A-projective The complex $P_{\bullet} : \ldots \to P_n \to \ldots \to P_1 \to P_0$ is called *projective resolution* of M.

Similarly, we have an exact complex

$$O \to M \to I^0 \to I^1 \to \ldots \to I^n \to \ldots$$

with I^i being A-injective The complex $I^{\bullet}: I^0 \to I^1 \to \ldots \to I^n \to \ldots$ is called *injective resolution* of M.

When we have a projective resolution

$$O \to P_n \to \ldots \to P_1 \to P_0 \to M \to O$$
,

we say that the *projective dimension* of M is at most n, denote by $\operatorname{pdim}_A M \leq n$. Similarly, when we have an injective resolution

$$O \to M \to I^0 \to I^1 \to \ldots \to I^n \to O,$$

we say that the *injective dimension* of M is at most n, denote by $\operatorname{idim}_A M \leq n$.

The *left global dimension* $\operatorname{lgldim} A$ of A is the supremum of $\operatorname{pdim} M$ of left A-modules M.

Theorem 6.10 (Higher Extension Groups). *The following hold.*

- 1. Let $\ldots \to P_n \to \ldots \to P_1 \to P_0 \to X \to O$ be a projective resolution of a left A-module X. Then for any $Y \in \operatorname{Mod} A$ and any $n \ge 0$, $\operatorname{H}^n \operatorname{Hom}_A(P,Y)$ is determined independent of choice of projective resolutions.
- 2. Let $O \to Y \to I^0 \to I^1 \to \ldots \to I^n \to \ldots$ be an injective resolution of a left A-module Y. Then for any $M \in \text{Mod } A$ and any $n \ge 0$, $H^n \operatorname{Hom}_A(X, I^{\bullet})$ is determined independent of choice of injective resolutions.
- 3. For $X, Y \in \mathsf{Mod} A$, we have $\mathrm{H}^n \operatorname{Hom}_A(P_{X,\cdot},Y) \cong \mathrm{H}^n \operatorname{Hom}_A(X, I_Y)$ for $n \ge 0$, where $P_{X,\cdot}$ (resp., I_Y) is a projective (resp., an injective) resolution of X (resp., Y).

The additive group $\operatorname{H}^{n}\operatorname{Hom}_{A}(P_{X,\cdot},Y)\cong \operatorname{H}^{n}\operatorname{Hom}_{A}(X,I_{Y})$ is called the n-th Extension group $\operatorname{Ext}_{A}^{n}(X,Y)$.

Proposition 6.11. The following hold.

- 1. If P is A-projective, then $\operatorname{Ext}_{A}^{n}(P, Y) = 0$ for $n \geq 1$.
- 2. If I is A-injective, then $\operatorname{Ext}_{A}^{n}(X, I) = 0$ for $n \ge 1$.
- 3. For an exact sequence $O \to X \to Y \to Z \to O$ in Mod A, we have long exact sequences

$$\begin{array}{lll} O \to \operatorname{Hom}_{A}(M,X) \to & \operatorname{Hom}_{A}(M,Y) \to \operatorname{Hom}_{A}(M,Z) \to \\ \operatorname{Ext}_{A}^{1}(M,X) \to & \operatorname{Ext}_{A}^{1}(M,X) \to \operatorname{Ext}_{A}^{1}(M,X) \to \\ \operatorname{Ext}_{A}^{2}(M,X) \to \dots, \end{array}$$

JUN-ICHI MIYACHI

and

$$O \to \operatorname{Hom}_{A}(Z, M) \to \operatorname{Hom}_{A}(Y, M) \to \operatorname{Hom}_{A}(X, M) \to \operatorname{Ext}_{A}^{1}(Z, M) \to \operatorname{Ext}_{A}^{1}(Y, M) \to \operatorname{Ext}_{A}^{1}(X, M) \to \operatorname{Ext}_{A}^{2}(Z, M) \to \dots$$

Lemma 6.12 (Nakayama's Lemma). Let A be a ring with unity, J the Jacobson radical of A, and M a finitely generated left A-module. For a left A-submodule N of M, if JM + N = M, then N = M.

Definition 6.13 (Minimal Projective resolution). Let M be a finitely generated left A-module. A projective resolution of M

$$\dots \to P_n \to \dots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \to M \to O$$

is called a minimal projective resolution provided that $\operatorname{Im} d_i \subset JP_{i-1}$ for all $i \geq 1$. This resolution does not exists in general. In the case of A being left artinian, a minimal projective resolution exists for any finitely generated left A-module.

Definition 6.14 (Indecomposable Module). A left *A*-module *M* is called *indecomposable* provided that if $M = X \oplus Y$, then X or Y = O.

Definition 6.15. Let A and B be k-algebras. The tensor product $A \otimes_k B$ is the k-algebra defined by

$$(a \otimes b)(a' \otimes b') = aa' \otimes bb' 1_{A \otimes B} = 1_A \otimes 1_B.$$

Then we have

$$(1_A \otimes b)(a \otimes 1_B) = a \otimes b = (a \otimes 1_B)(1_A \otimes b)$$

Definition 6.16 (The Skew Field of Formal Laurant Polynomials). For a skew field L, let

$$L\{X\} = \{\sum_{i=n}^{\infty} a_i X^i | n \in \mathbb{Z}, a_i \in L\}.$$

We define the multiplication of $\Sigma_{i=m}^\infty a_i X^i, \Sigma_{j=n}^\infty b_j X^j \in L\{X\}$ by

$$(\Sigma_{i=m}^{\infty}a_iX^i)(\Sigma_{j=n}^{\infty}b_jX^j) = \Sigma_{k=m+n}^{\infty}(\Sigma_{i+j=k}a_ib_j)X^k,$$

and define

$$\deg_{\min}(\Sigma_{i=m}^{\infty}a_iX^i) = m$$

if $a_m \neq 0$. Then we have

$$\deg_{min}(fg) = \deg_{min}(f) + \deg_{min}(g)$$

for non-zero polynomials $f, g \in L\{X\}$. It is easy to see that $L\{X\}$ is a skew field.

References

- [ARS] M. Auslander, I. Reiten and Sverre O. Smalø, "Representation Theory of Artin Algebras," Cambridge Studies in Advanced Math. 36, Cambridge, UK 1997 (corrected paperback edition).
- [Co1] P. M. Cohn, The range of derivations on a skew field and the equation ax xa = c, J. Indian Math. Soc. **37** (1973) 61-69.
- [Co2] P. M. Cohn, "Skew Fields," Encyclopedia of Math. and Its Appl. 57, Cambridge, UK 1995.
- [Rl] C.M. Ringel, "Tame Algebras and Integral Quadratic Forms," Lecture Notes in Math. 1099, Springer-Verlag, Berlin, 1984.
- [Ro] J. J. Rotman, "An introduction to homological algebra," Pure and Applied Mathematics 85, Academic Press, 1979.
- [Sc] R. Schultz, A non-projective module without self-extensions, preprint.

J. Miyachi: Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo, 184-8501, Japan

 $E\text{-}mail \ address: \texttt{miyachi@u-gakugei.ac.jp}$