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1. Modules and Representations

Throughout this note, k is a field, and we deal with associative k-algebras. A
k-algebra A is a k-vector space with a k-bilinear map µ : A × A → A satisfying



1A ∈ A

µ(1A, a) = a (∀a ∈ A)

µ(a, 1A) = a (∀a ∈ A)

µ ◦ (µ × 1) = µ ◦ (1× µ)

(1.1)

A ×A ×A
µ×1−−−−→ A ×A

1×µ
� �µ

A ×A
µ−−−−→ A

In this note, for a k-algebra A, we fix a complete set {ei|1 ≤ i ≤ n} of orthogonal
primitive idempotents of A. Then we have

A =
⊕

1≤i,j≤n
eiAej

as a k-vector space and a family of k-bilinear maps

µijk : eiAej × ejAek → eiAek
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such that 


ei ∈ eiAei(∀i)

µiij(ei, aij) = aij (∀aij ∈ eiAej)

µijj(aij , ej) = aij (∀aij ∈ eiAej)

µikl ◦ (µijk × 1) = µijl ◦ (1× µjkl)

(1.2)

eiAej × ejAek × ekAel
µijk×1−−−−→ eiAek × ekAel

1×µjkl

� �µikl

eiAej × ejAel
µijl−−−−→ eiAel

Conversely, a system (eiAej (1 ≤ i, j ≤ n);µijk (1 ≤ i, j, k ≤ n)) of k-vector
spaces satisfying the equation 1.2 defines a k-algebra A =

⊕
1≤i,j≤n eiAej (in this

case we define the other multiplications to be 0).
A (left) A-module M is a k-vector space with a k-bilinear map φM : A×M → M

satisfying {
φM(1A, m) = m (∀m ∈ M)

φM ◦ (1× φM) = φM ◦ (µ × 1)
(1.3)

A × A × M
µ×1−−−−→ A ×M

1×φM

� �φM

A × M
φM

−−−−→ M

As an equivalent notion, a representation M of A is a k-vector space with a
k-algebra map ψ : A → Endk(M), where Endk(M) is the k-vector space of k-linear
endomaps of M.

For a complete set {ei|1 ≤ i ≤ n} of orthogonal primitive idempotents of A, we
have

M =
⊕

1≤i≤n

eiM

as a k-vector space and a family of k-bilinear maps

φMji : ejAei × eiM → ejM

such that {
φMii (ei, mi) = mi (∀mi ∈ eiM)

φMkj ◦ (1× φMji ) = φMki ◦ (µkji × 1)
(1.4)

ekAej × ejAei × eiM
µkji×1−−−−→ ekAei × eiM

1×φM
ji

� �φM
ki

ekAej × ejM
φM

kj−−−−→ ekM
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As an equivalent notion, a family (eiM)1≤i≤n of k-vector spaces with k-linear
maps ψM

ij : eiAej → Homk(ejM, eiM) such that


ψM
ii (ei) = 1eiM

ψM
ik (aijbjk) = ψM

ij (aij) ◦ ψM
jk (bjk)

(∀aij ∈ eiAej ,
∀bjk ∈ ejAek)

(1.5)

ekM

ψM
jk(bjk)

��

ψM
ik (aijbjk)

����������

ejM
ψM

ij (aij)

�� eiM

where Homk(ejM, eiM) is the k-vector space of k-linear maps from ejM to eiM .

Example 1.6. For a left A-module Aer , a family (eiAer)1≤i≤n with k-linear maps
ψAer
ij : eiAej → Homk(ejAer, eiAer) defined by ψAer

ij (aij) = µijr(aij ,−).

ejAer
µijr(aij,−)−−−−−−−→ eiAer (aij ∈ eiAej)

For representations M, N , an A-homomorphism f : M → N is a k-linear map
satisfying

f ◦ ψM (a) = φN (a) ◦ f (∀a ∈ A)(1.7)

M
ψM (a)−−−−→ M

f

� �f

N −−−−→
ψN(a)

N

Then we have a family (fi : eiM → eiN)1≤i≤n of k-linear maps satisfying

fi ◦ ψM
ij (aij) = φNij (aij) ◦ fj (∀aij ∈ eiAej)(1.8)

ejM
ψM

ij (aij)−−−−−→ eiM

fj

� �fi

ejN −−−−−→
φN

ij(aij)
eiN

Conversely, it is easy to see that a system (eiM (1 ≤ i ≤ n);ψM
ij (1 ≤ i, j ≤ n))

of k-vector spaces defines a left A-module M =
⊕

1≤i≤n eiM (in this case we define
the other actions to be 0), and that a family (fi)1≤i≤n of k-linear maps defines an
A-homomorphism from M to N .

Example 1.9. For idempotents er, es of A, anA-homomorphism µ(−, bsr) : Aes →
Aer is obtained by a family of k-linear maps µisr(−, bsr) : eiAes → eiAer (1 ≤ i ≤
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n).

ejAes
µijs(aij,−)−−−−−−−→ eiAes

µjsr(−,bsr)

� �µisr(−,bsr)

ejAer
µijr(aij,−)−−−−−−−→ eiAer

Theorem 1.10. Let RepA be the category consisting of M = (M(i) (1 ≤ i ≤
n);ψM

ij (1 ≤ i, j ≤ n)) satisfying

ψM
ii (ei) = 1M(i)

ψM
ik (aijbjk) = ψM

ij (aij) ◦ ψM
jk (bjk)

(∀aij ∈ eiAej,
∀bjk ∈ ejAek)

M(k)

ψM
jk(bjk)

��

ψM
ik (aijbjk)

������
�����

M(j)
ψM

ij (aij)

�� eiM(i)

as objects, and of (fi : M(i) → N(i))1≤i≤n satisfying

fi ◦ ψM
ij (aij) = φNij (aij ) ◦ fj

M(j)
ψM

ij (aij)−−−−−→ M(i)

fj

� �fi

N(j) −−−−−→
φN

ij(aij)
N(i)

for M, N as morphisms. Then RepA is equivalent to the category ModA of left
A-modules.

For A-modules M, N , we denote by HomA(M, N) the set of A-homomorphisms
from M to N .

Lemma 1.11. For a left A-module M , we have

HomA(Aei, M) ∼= eiM

as eiAei-modules.

Proof. Let θ : HomA(Aei, M) → eiM be the map defined by (f) = f(ei) for f ∈
HomA(Aei, M), and η : eiM → HomA(Aei, M) the map defined by η(mi)(aei) =
ami for mi ∈ eiM and aei ∈ Aei. Then θ, η are A-homomorphisms and θη = 1,
ηθ = 1.

Corollary 1.12. Let J be the Jacobson radical of A. Assume that A is a basic
artinian k-algebra, that is, Aei �∼= Aej for i �= j. Then we have

HomA(Aei, Aej/Jej) ∼=
{

eiAei/eiJei if i = j

O if i �= j



REPRESENTATIONS AND QUIVERS FOR RING THEORISTS 5

Proposition 1.13. Assume that A is a finite dimensional k-algebra satisfying A/J
∼= k × · · · × k (i.e., eiAei/eiJei ∼= k for any 1 ≤ i ≤ n). For a left A-module M ,
we have

dimk eiM = the appearance number of simple type Aei/Jei
in a composition series of M.

Proof. Let

O = M−1 ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

be a composition series. Then we have an exact sequence

O → HomA(Aei, Mt−1) → HomA(Aei, Mt) → HomA(Aei, Mt/Mt−1) → O

for 1 ≤ t ≤ r. Therefore we have

dimk eiM =
∑

0≤t≤r
dimkHomA(Aei, Mt/Mt−1).

By Corollary 1.12, we get the statement.

Example 1.14. In the case of A/J ∼= k × · · · × k, we may assume that A =
(⊕n

i=1kei)⊕J . A simple left A-module Aer/Jer is described by (M(i);ψM
ij ) ∈ Rep A

as follows.

M(i) =

{
k if i = r

O if i �= r

ψM
ij (aij) =




λ if (i, j) = (r, r), aij = λer

0 if (i, j) = (r, r), aij ∈ erJer

0 otherwise

2. Quivers and Path Algebras

Definition 2.1. A quiver �Q = (Q0, Q1) is an oriented graph, where Q0 is a set
of vertices and Q1 is a set of arrows between vertices. We use h : Q1 → Q0,
t : Q1 → Q0 the maps defined by h(α) = j, t(α) = i when α : i → j is arrow
from the vertex i to the vertex j. A quiver �Q = (Q0, Q1) is called a finite quiver if
#Q0,#Q1 < ∞.

A path w = (i|αr , . . . , α1|j) from the vertex j to the vertex i in the quiver �Q is
a sequence of ordered arrows α1, . . . , αr such that j = t(α1), h(αi) = t(αi+1) (1 ≤
i ≤ r− 1), h(αr) = i. In this case, j (resp., i) is called the tail t(w) (resp., the head
h(w)) of w, and r is called the length of a path w. For every vertex i, the path
ei = (i| |i) of length 0 is called the empty path. A non-empty path w is called an
oriented cycle if h(w) = t(w).

Definition 2.2. Let Q0 = {1, . . . , n} and Q1 a set. For any i, j ∈ Q0, ei| �Q|ej is the
set of paths w in �Q with t(w) = j, h(w) = i. For any i, j, k ∈ Q0 with ei|�Q|ej �= φ,
ej | �Q|ek �= φ, we define a composition map µijk : ei| �Q|ej × ej |�Q|ek → ei| �Q|ek by
setting

µijk((i|αs, . . . , αr+1|j), (j|αr , . . . , α1|k)) = (i|αs, . . . , α1|k).
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Then for any i, j, k, l ∈ Q0 with ei| �Q|ej �= φ, ej | �Q|ek �= φ, ek| �Q|el �= φ, we have

ei|�Q|ej × ej | �Q|ek × ek| �Q|el
µijk×1−−−−→ ei|�Q|ek × ek| �Q|el

1×µjkl

� �µikl

ei|�Q|ej × ej | �Q|el
µijl−−−−→ ei|�Q|el

We denote by eik �Qej the k-vector space with the paths from the vertex j to i

as a basis if ei| �Q|ej �= φ, and eik �Qej = O if ei| �Q|ej = φ. For any i, j, k ∈ Q0, we
define a k-bilinear map µijk : eik �Qej × ejk �Qek → eik �Qek by setting

µijk(λvv, λww) = λvλwvw

with λv, λw ∈ k. For any i, j, k, l ∈ Q0, we have

eik �Qej × ejk �Qek × ekk �Qel
µijk×1−−−−→ eik �Qek × ekk �Qel

1×µjkl

� �µikl

eik �Qej × ejk �Qel
µijl−−−−→ eik �Qel

Then, by 1.2, k �Q =
⊕

1≤i,j≤n eik �Qej becomes an associative k-algebra. This alge-
bra is called the path algebra of �Q over k.

We often simply write αr , . . . , α1 for (i|αr, . . . , α1|j).

Proposition 2.3. For a finite quiver �Q, k �Q is a finite dimensional k-algebra if
and only if �Q has no oriented cycle.

Example 2.4. For a quiver

�Q : 1
α �� 2

β �� 3

we have

e1k �Qe1 =< e1 >k e2k �Qe1 =< α >k e3k �Qe1 =< βα >k

e1k �Qe2 = O e2k �Qe2 =< e2 >k e3k �Qe2 =< β >k

e1k �Qe3 = O e2k �Qe3 = O e3k �Qe3 =< e3 >k

Then we have

k �Q ∼=


k 0 0

k k 0
k k k




Example 2.5. For a quiver

�Q : 1
α ��

β
�� 2

γ �� 3

we have

e1k �Qe1 =< e1 >k e2k �Qe1 =< α, β >k e3k �Qe1 =< γα, γβ >k

e1k �Qe2 = O e2k �Qe2 =< e2 >k e3k �Qe2 =< γ >k

e1k �Qe3 = O e2k �Qe3 = O e3k �Qe3 =< e3 >k



REPRESENTATIONS AND QUIVERS FOR RING THEORISTS 7

Then we have

k �Q ∼=
[

k O

AMk A

]
, A =

[
k 0
k k

]
, AM =

[
k
k

]
⊕

[
k
k

]
Example 2.6. For a quiver

�Q : 1
α �� 2 β��

we have

e1k �Qe1 =< e1 >k e2k �Qe1 =< α, βnα : n ∈ N >k

e1k �Qe2 = O e2k �Qe2 =< e2, βn : n ∈ N >k

Then we have

k �Q ∼=
[

k 0
k[x] k[x]

]
Lemma 2.7. Let A be a ring, O → X → Y → Z → O an exact sequence of left
A-modules. Then we have

pdimA Y ≤ max{pdimA X,pdimA Z}

Proposition 2.8. For a finite dimensional k-algebra A, the following are equiva-
lent.

1. lgldimA ≤ n.
2. pdimA A/J ≤ n.

In particular, the following are equivalent.
1. A is hereditary.
2. J is projective.
3. lgldimA ≤ 1.
4. pdimA A/J ≤ 1.

Proposition 2.9. Let �Q be a finite quiver without oriented cycles. Then k �Q is
hereditary, and k �Q/Jk �Q

∼= k × · · · × k, where Jk �Q is the Jacobson radical of k �Q.

Proof. Let Q0 = 1, . . . , n, then 1 = e1 + . . . + en. Let J+ be the vector space
spanned by paths of length ≥ 1, then there exists t ≥ 0 such that Jt+1

+ = 0.
Therefore J+ ⊂ Jk �Q. It is easy to see that k �Q/J+ ∼= ke1 × · · · ×ken as rings. Thus

we have J+ = Jk �Q. For i ∈ Q0, since �Q is finite, we may assume that the set of
arrows α with t(α) = i is {α1, . . . , αr}. Then we have

J+ei = ⊕r
i=1k �Qαi.

Since µ(−, αj) : k �Qeh(αi) → k �Q is an isomorphism, Jk �Qei is a projective left k �Q-

module, and hence Jk �Q is a projective left k �Q-module.

Definition 2.10. Given a quiver �Q = (Q0, Q1), a representation M = (M(i);ψM )
of �Q over a field k is a family (M(i))i∈Q0 of k-vector spaces together with a fam-
ily ( ψM (α) : M(j) → M(i))

j
α−→i∈Q1

of k-linear maps. A representation M =

(M(i);ψM ) is called a finite dimensional representation if M(i) is a finite dimen-
sional k-vector space for every i ∈ Q0.
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For (M(i);ψM), (N(i);ψN), a morphism f : (M(i);ψM) → (N(i);ψN) is a fam-
ily (fi : M(i)→ N(i))i∈Q0 of k-linear maps satisfying that we have a commutative
diagram

M(j)
ψM (α)−−−−→ M(i)

fj

� �fi

N(j)
ψN(α)−−−−→ N(i)

for any j
α−→ i ∈ Q1.

We denote by Repk �Q (resp., repk �Q) the category of representations (resp., finite
dimensional representations) of �Q over k.

Theorem 2.11. For a finite quiver �Q, Repk �Q is equivalent to Repk �Q, and hence
it is equivalent to Modk �Q. Moreover, repk �Q is equivalent to the category modfd k �Q

of finite dimensional left k �Q-modules.

Sketch of The Proof. For any idempotents ei, ej of k �Q, all elements of eik �Qej are
k-linear combinations of paths from j to i. Then it is easy.

Proposition 2.12. For any collection {(Mλ;ψMλ)}λ∈Λ of representations of �Q
over k, (

⊕
λ∈Λ Mλ;

⊕
λ∈Λ ψMλ) (resp., (

∏
λ∈Λ Mλ;

∏
λ∈Λ ψMλ)) is the direct sum

(resp., the direct product) of {(Mλ;ψMλ)}λ∈Λ.

Example 2.13. For a quiver

�Q : 1
α �� 2

β �� 3

k �Q =< e1, e2, e3, α, β, βα >k. A representation M of �Q over k is the following

M(1)
ψM (α)−−−−→ M(2)

ψM (β)−−−−→ M(3)

Then we define M = M(1) ⊕ M(2)⊕ M(3) to be a left A-module as follows. For
m = (m1, m2, m3) ∈ M and a = λ1e1 + λ2e2 + λ3e3 + λαα + λββ + λβαβα ∈ k �Q,
we define

am = (λ1m1, λ2m2 + λαψ
M (α)(m1), λ3m3 + λβψ

M(β)(m2) + λβαψ
M (β)ψM(α)(m1))

By the standard technique of linear algebra, all indecomposable representations
are up to isomorphisms the following

M1 : O → O → k M2 : O → k → k M3 : k → k → k
M4 : O → k → O M5 : k → k → O M6 : k → O → O

It is easy to see that we have composition series of M3 and M5

M1 : O −−−−→ O −−−−→ k� � � �
M2 : O −−−−→ k −−−−→ k� � � �
M3 : k −−−−→ k −−−−→ k

M4 : O −−−−→ k −−−−→ O� � � �
M5 : k −−−−→ k −−−−→ O
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Then M1
∼= k �Qe3/Je3, M2/M1

∼= k �Qe2/Je2, M3/M2
∼= k �Qe1/Je1, and M4

∼=
k �Qe2/Je2, M5/M4

∼= k �Qe1/Je1, where J is the Jacobson radical of k �Q. More-
over, k �Qe1 ∼= M3, Je3 ∼= JM3

∼= k �Qe2 ∼= M2 and Je2 ∼= JM2
∼= k �Qe3 ∼= M1.

We often write modules by using composition series

M1 : 3 M2 :
2
|β
3

M3 :
1
|α
2
|β
3

M4 : 2 M5 :
1
|α
2

M6 : 1

3. Quivers with Relations

Definition 3.1. A relation σ on a quiver �Q over a field k is a k-linear combinations
σ =

∑r
t=1 λtwt, where w are paths from j to i, λt ∈ k. A pair (�Q,ρ) is called a

quiver with relations over k if ρ = {σ1, . . . , σs} where σi is a relation for every i. We
denote k(�Q,ρ) = k �Q/ < ρ >, where < ρ > is the two-sided ideal of k �Q generated
by relations of ρ. We denote by J+ the two-sided ideal of k �Q generated by arrows.

Proposition 3.2. Let ( �Q, ρ) be a finite quiver with relations over k. If there is t

such that Jt
+ ⊂< ρ >⊂ J2

+, then J+ = rad(k( �Q, ρ)), where J+ is the image of J+
in k( �Q, ρ).

Proof. Let A = k(�Q,ρ) and J = rad(k( �Q, ρ)). Since J+
t
= O, we have J+ ⊂ J . It

is clearly that A/J+
∼= k �Q/J+ is semi-simple. Then (J + J+)/J+ = O, and hence

J+ ⊂ J .

Definition 3.3. For a quiver with relations ( �Q, ρ) over k, Repk(�Q,ρ) (resp.,
repk(�Q,ρ)) is the full subcategory of Repk �Q (resp., repk �Q) consisting objects
M = (M(i);ψM ) with ψM (σ) = 0 for any relation σ of ρ. Here ψM(w) =
ψM (αr) . . . ψM (α1) for w = αr . . . α1, and ψM(σ) = Σtλtψ

M (wt) for σ = Σtλtwt.

Theorem 3.4. For a finite quiver with relations ( �Q, ρ) over k, Repk(�Q,ρ) (resp.,
repk(�Q,ρ)) is equivalent to Mod k(�Q,ρ) (resp., modfd k( �Q, ρ)).

Sketch. According to Theorem 2.11 and the explanations before the theorem,
ψM (σ) = 0 means that σM = O when we consider M =

⊕
i∈Q0

M(i) as a left
k �Q-module.

Definition 3.5. For a quiver �Q, the opposite quiver �Qop is the quiver with all
arrows reversed. For a quiver with relations (�Q,ρ) over k, (�Qop , ρop) is similarly
defined. Then k(�Q,ρ)op = k(�Qop, ρop).

Let D = Homk(−, k). For a representation M = (M(i);ψM ) ∈ Repk( �Q, ρ),
DM = (DM(i);ψDM ), where ψDM (α) = DψM (α). Then DM is a representation
of (�Qop , ρop) over k.

Proposition 3.6. For a quiver with relations ( �Q, ρ) over k, D induces a duality
between repk(�Q, ρ) and repk(�Qop, ρop).

Remark 3.7. For a k-algebra A, idempotents ei, ej and aij ∈ eiAej , we have a left
A-homomorphism µ(−, aij) : Aei → Aej . Then we have a commutative diagram in
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ModAop

HomA(Aej , A)
HomA(µ(−,aij),A)−−−−−−−−−−−−→ HomA(Aei, A)

�
� ��

ejA −−−−−→
µ(aij ,−)

eiA

In Repk �Q, we have also the same result.

Example 3.8. For a quiver

�Q : 1
α �� 2

β �� 3

with a relation ρ = βα. Then k �Q =< e1, e2, e3, α, β, βα >k and the ideal < ρ >=<

βα >k . Therefore k(�Q,ρ) =< e1, e2, e3, α, β >k . Let A = k(�Q,ρ), then we have

e1Ae1 =< e1 >k e2Ae1 =< α >k e3Ae1 = O
e1Ae2 = O e2Ae2 =< e2 >k e3Ae2 =< β >k

e1Ae3 = O e2Ae3 = O e3Ae3 =< e3 >k

Since this algebra is a factor of the path algebra in Example 2.13, all indecomposable
representations are up to isomorphisms the following

M1 : O → O → k M2 : O → k → k
M4 : O → k → O M5 : k → k → O M6 : k → O → O

The opposite quiver of with relations ( �Qop, ρop) is

�Qop : 1 2
αop
�� 3

βop
��

with ρop = αopβop. Therefore we have

Ae3 = Ae3/Je3 ∼= M1 Ae2 ∼= D(e3A) ∼= M2

Ae2/Je2 ∼= M4 Ae1 ∼= D(e2A) ∼= M5 D(e1A) ∼= Ae1/Je1 ∼= M6

M1 : 3 M2 :
2
|β
3

M4 : 2 M5 :
1
|α
2

M6 : 1

Since projective resolutions of Ae1/Je1, Ae2/Je2, Ae3/Je3 are

O −−−−→ Ae3 −−−−→ Ae2 −−−−→ Ae1 −−−−→ Ae1/Je1 −−−−→ O

O −−−−→ 3 −−−−→
2
|β
3

−−−−→
1
|α
2

−−−−→ 1 −−−−→ O

O −−−−→ Ae3 −−−−→ Ae2 −−−−→ Ae2/Je2 −−−−→ O

O −−−−→ 3 −−−−→
2
|β
3

−−−−→ 2 −−−−→ O

O −−−−→ Ae3 Ae3 −−−−→ O

O −−−−→ 3 3 −−−−→ O

by Proposition 2.8, lgldim k(�Q,ρ) = 2. Moreover, an injective resolution of AA is

O ��
AA �� D(e2A)⊕D(e3A)2 �� D(e2A) �� D(e1A) �� O

Since pdimAD(e2A) = pdimAD(e3A) = 0 and pdimAD(e1A) = 2, A is an Auslan-
der regular k-algebra.
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Example 3.9. For a quiver

�Q : 1
α ��

2
β

��

with a relation ρ = {βα}. Then
k �Q =< e1, e2, α, β, (βα)h, (αβ)lα(βα)m, β(αβ)n : h, l, m,n ∈ N >k

and the ideal

< ρ >=< (βα)h, (αβ)l+1, α(βα)m, β(αβ)n : h, l, m, n ∈ N >k .

Therefore k( �Q, ρ) =< e1, e2, e3, α, β, αβ >k . Let A = k(�Q,ρ), then we have

e1Ae1 =< e1 >k e2Ae1 =< α >k

e1Ae2 =< β >k e2Ae2 =< e2, αβ >k

The opposite quiver of with relations ( �Qop, ρop) is

�Qop : 1
βop

�� 2
αop
��

with a relation ρop = {αopβop}. Hence we have

Ae1 :
1
|α
2
: k

1 ��
k

0
�� Ae2 ∼= D(e2A) :

2
|β
1
|α
2

: k

[ 01 ] ��
k2

[ 1 0 ]
��

D(e1A) :
2
|β
1
: k

0 ��
k

1
��

Ae1/Je1 : 1 : k
0 ��

O
0

�� Ae2/Je2 : 2 : O
0 ��

k
0

��

Since projective resolutions of Ae1/Je1, Ae2/Je2 are

O −−−−→ Ae1 −−−−→ Ae2 −−−−→ Ae1 −−−−→ Ae1/Je1 −−−−→ O

O −−−−→
1
|α
2

−−−−→
2
|β
1
|α
2

−−−−→
1
|α
2

−−−−→ 1 −−−−→ O

O −−−−→ Ae1 −−−−→ Ae2 −−−−→ Ae2/Je2 −−−−→ O

O −−−−→
1
|α
2

−−−−→
2
|β
1
|α
2

−−−−→ 2 −−−−→ O

by Proposition 2.8, lgldimA = 2. A projective resolution of D(e1A) is

O −−−−→ Ae1 −−−−→ Ae2 −−−−→ Ae2 −−−−→ D(e1A) −−−−→ O

O −−−−→
1
|α
2

−−−−→
2
|β
1
|α
2

−−−−→
2
|β
1
|α
2

−−−−→
2
|β
1

−−−−→ O

Moreover, an injective resolution of AA is

O ��
AA �� D(e2A)2 �� D(e2A) �� D(e1A) �� O

Since pdimAD(e2A) = 0 and pdimAD(e1A) = 2, A is an Auslander regular k-
algebra.
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Definition 3.10. Let Λ be a ring, and V a Λ-bimodule. We denote by V ⊗n =
n times︷ ︸︸ ︷

V ⊗Λ · · · ⊗Λ V . Then the tensor ring T(Λ, V ) is Λ ⊕ (
⊕

n≥1 V ⊗n) as an abelian
group, and its multiplication is induced by the canonical Λ-bilinear maps
V ⊗m⊗ΛV ⊗n → V ⊗m+n for m,n ≥ 0.

Lemma 3.11. Let Λ be a ring, V a Λ-bimodule and A a Λ-algebra. For a Λ-
bimodule homomorphism f : V → A, there exists a unique Λ-algebra homomor-
phism f̃ : T(Λ, V ) → A such that f̃ |V = f .

Sketch of The Proof. Let φ : Λ → A be a ring homomorphism. A map f̃ :
T(Λ, V ) → A is defined by

f̃(a0 +
∑
i≥1

∑
j

vi1j ⊗ · · · ⊗ viij) = φ(a0) +
∑
i≥1

∑
j

f(vi1j ) . . . f(viij)

for a0+
∑

i≥1

∑
j vi1j⊗· · ·⊗viij ∈ T(Λ, V ). Then this satisfies the desired property.

Definition 3.12. For a k-algebra Λ =
∏n

i=1k and Λ-bimodule V , the quiver
�QT(Λ,V ) of T(Λ, V ) consists of QT(Λ,V )0 = {1, . . . , n}, and of the number of ar-
rows from the vertex i to j which is dimk ejV ei, where ei, ej correspond to i, j.

For a finite dimensional k-algebra A with A/JA ∼=
∏n

i=1k, the quiver �QA is the
quiver �QT(A/JA,JA/J2

A).

Proposition 3.13. For a k-algebra Λ =
∏n

i=1k and Λ-bimodule V , there is a k-
algebra isomorphism φ : T(Λ, V )→ k �QT(Λ,V ).

Proof. Since k �Q = (⊕n
i=1λiei)⊕J+, we identify the idempotents of A/J with them

of k �Q. For 1 ≤ i, j ≤ n, we take a k-basis {vijk|1 ≤ k ≤ nij} of eiV ej , and denote
by αvijk

the arrow in k �QT(Λ,V ) corresponding to vijk. A map φ : T(Λ, V ) → A is
defined by

φ(
n∑
i=1

λiei +
∑
i≥1,j

λijui1j ⊗ · · · ⊗ uiij) =
n∑
i=1

λiei +
∑
i≥1,j

λijαui1j . . . αuiij

for
∑n

i=1 λiei +
∑

i≥1,j λijui1j ⊗ · · · ⊗ uiij ∈ T(Λ, V ), where uijk are elements of
the above basis. It is easy to see that dimk ei(

⊕
n≥1 V ⊗n)ej = eik �Qej . Hence φ is

bijective.

Theorem 3.14. Let A be a finite dimensional k-algebra with A/JA ∼=
∏n

i=1k.
Then the following hold.

1. There is a surjective ring homomorphism φ : T(A/JA, JA/J2
A) → A such that∐

i≥rl(A)(JA/J2
A)

i ⊂ Kerφ ⊂ (JA/J2
A)

2, where rl(A) is the Loewy length of A

(i.e. rlA = min{t|Jt+1
A = 0}).

2. A ∼= k(�Q,ρ) with Jr
A ⊂< ρ >⊂ J2

A for some r, where �Q = �QA.

Proof. 1. By the assumption, we may assume that a split injective k-algebra homo-
morphism φ0 : A/J → A, A/J = ⊕n

i=1kei and A = A/J⊕J with J = JA the Jacob-
son radical of A. For any ei, ej , we choose elements rij1, . . . , rijnij

of eiJej such that
{rij1, . . . , rijnij} is a k-basis of ei(J/J2)ej . Let φ1 : J/J2 → A be an A/J-bimodule
homomorphism defined by φ1(rijk) = rijk, then by Lemma 3.11, there exists an
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A/J-algebra homomorphism φ : T(A/J, J/J2) → A such that φ̃|A/J⊕J/J2 = φ0⊕φ1

is injective. Therefore
∐

i≥rl(A)(JA/J2
A)

i ⊂ Kerφ ⊂ (JA/J2
A)

2, because of Jt+1 = 0
for t = rl(A). If rl(A) = 1, then φ is clearly bijective. In order to prove that
φ is surjective, it suffices to show that for any m ≥ 1 and any x ∈ Jm, there
exists y ∈ (φ(J/J2))m such that x − y ∈ Jm+1. In the case of m = 1, it
is trivial. In the case of m ≥ 2, for x ∈ Jm we have x =

∑
i viwi, where

vi ∈ J and wi ∈ Jm−1. Then there are yi ∈ φ(J/J2) and zi ∈ (φ(J/J2))m−1

such that vi − yi ∈ J2 and wi − zi ∈ Jm. Since vi ∈ J and zi ∈ Jm−1,
viwi − yizi = vi(wi − zi) + (vi − yi)zi ∈ Jm+1 and hence x −

∑
i yizi ∈ Jm+1.

2. According to Proposition 3.13, we have a surjective k-algebra homomorphism
φ : k �Q → A, where �Q = �QA. Let t = rl(A) + 1, then φ induces a surjective
k-algebra homomorphism ψ : k �Q/Jt+ → A. Since k �Q/Jt

+ is a finite dimensional
k-algebra, Kerψ is a finitely generated ideal. Hence Ker φ is a finitely generated
ideal < σ1, . . . , σs > of k �Q, because Jt

+ is a finitely generated ideal of k �Q. Since
σh =

∑
ij eiσhej , there is a set ρ of relations such that Kerφ =< ρ >.

Lemma 3.15. Let A be a hereditary finite dimensional k-algebra, I a two-sided
ideal of A with I ⊂ J2

A. Then A/I is not hereditary.

Proof. Consider the exact sequence in Mod A/I

O → I/IJA → JA/IJA
π−→ JA/I → O.

By Nakayama’s Lemma, I/IJA �= O. Since JA is A-projective, JA/IJA is A/I -
projective. I ⊂ J2

A implies I/IJA ⊂ J2
A/IJA = JA/I(JA/IJA), If JA/I is A/I -

projective, then there is η : JA/I → JA/IJA such that πη = 1JA/I , and then
JA/I(JA/IJA) ⊕ Imη = JA/IJA. By Nakayama’s Lemma, Imη = JA/IJA and
I/IJA = O. This is a contradiction. Hence JA/I is not A/I-projective. By
Proposition 2.8, we get the statement.

Proposition 3.16. Let A be a finite dimensional k-algebra with A/JA ∼= k×· · ·×k.
Then the following are equivalent.

1. A is hereditary.
2. A ∼= k �QA.

Proof. 1 ⇒ 2. Let f : Aei → Aej be a non-zero A-homomorphism for primitive
idempotents i, j. If f is not an isomorphism, then f is a monomorphism, because
Im f is projective. Then there is no path Aei1 → · · · → Aein = Aei1 of non-zero
A-homomorphisms which are not isomorphisms. Hence �Q has no oriented cycle,
k �Q is a finite dimensional k- algebra. By Lemma 3.15, A ∼= k �QA.

2 ⇒ 1. By Proposition 2.9, it is trivial.

4. Base Extensions and Representations

Let k be a field and R a k-algebra. For a quiver with relations (�Q,ρ) over a
field k, let e1, . . . , en be the set of idempotents corresponding to vertices in �Q,
A = k(�Q,ρ) and AR = R⊗kk( �Q, ρ). Then we can consider that AR =

⊕
path w Rw

and rw = wr for any r ∈ R and any path w in �Q.
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A left AR-module M is a left A-module, and it is a direct sum
⊕n

i=1eiM as an
R-module. For any α ∈ Q1, we have

α(rm) = (αr)m
= (rα)m
= r(αm)

with r ∈ R, m ∈ M . Then ψM (α) : ejM → eiM is a left R-linear map, and we get
a system (eiM ;ψM ) of left R-modules satisfying

1. eiM is a left R-module for any i.
2. ψM (α) is a left R-linear map for any α ∈ Q1.
3. ψM (σ) = 0 for any relation σ ∈ ρ.

For a left AR-homomorphism f : M → N , we get left R-linear maps eif = fi :
eiM → eiN (1 ≤ i ≤ n) such that

fi ◦ ψM (α) = ψN(α) ◦ fj(4.1)

for any α ∈ Q1.

ejM
ψM (α)−−−−→ eiM

fj

� �fi

ejN −−−−→
ψN(α)

eiN

Theorem 4.2. Let A = k(�Q,ρ), and let RepR/k( �Q, ρ) be the category consisting of
M = (M(i) (1 ≤ i ≤ n);ψM (α)(α ∈ Q1)) satisfying

1. M(i) is a left R-module for any i.
2. ψM (α) is a left R-linear map for any α ∈ Q1.
3. ψM (σ) = 0 for any relation σ ∈ ρ.

as objects, and of (fi : M(i) → N(i))1≤i≤n satisfying

fi ◦ ψM (α) = φN (α) ◦ fj

M(j)
ψM (α)−−−−→ M(i)

fj

� �fi

N(j) −−−−→
φN (α)

N(i)

for M, N as morphisms. Then RepR/k(�Q,ρ) is equivalent to the category ModAR

of left AR-modules.

Sketch of The Proof. By the above, we can construct a functor from Mod AR to
RepR/k(�Q,ρ). Conversely, given M = (M(i);ψM ) ∈ RepR/k(�Q,ρ), let M =⊕n

i=1M(i). For any r ∈ R, any arrow α : i → j and m ∈ M(i), we define the
left AR-action

(rα)m = rψM (α)(m)
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Then for any r, s ∈ R, any arrow α : i → j, β : j → l and m ∈ M(i), we have

(sβ)((rα)m) = (sβ)(rψM (α)(m))
= ( s ψM (β))(rψM(α)(m))
= s(rψM (β) ( ψM(α)(m)))
= sr( ψM (β) ψM (α))(m))
= (srβα)(m)

Therefore M becomes a left AR-module. For a family (fi : M(i) → N(i))1≤i≤n of
morphisms , let f = ⊕n

i=1fi. For any r ∈ R, any arrow α : i → j and m ∈ M(i),
we have

fj(rαm) = fj (rψM (α)(m))
= r(fj ◦ ψM (α))(m)
= r( ψN(α) ◦ fi)(m)
= (rα)fi(m)

Hence f becomes a left AR-homomorphism. It is easy to see that this construction
defines a functor from RepR/k(�Q,ρ) to ModAR, and it is an equivalence.

5. Examples related to Tachikawa’s Conjecture

Conjecture 5.1 (Nakayama’s Conjecture). Let A be a finite dimensional algebra
over a field k, and

O → AA → I0 → I1 → . . .

an injective resolution of a left A-module AA. If all I i are projective, then A is
self-injective.

Tachikawa showed that the above conjecture is equivalent to the pair of the
following two conjectures.

Conjecture 5.2 (Tachikawa’s Conjectures). Let A be a finite dimensional algebra
over a field k, M a finitely generated left A-module.

1. If A is self-injective and ExtiA(M, M) = O for all i ≥ 1, then M is projective.
2. If ExtiA(DA, A) = O for all i ≥ 1, then A is self-injective.

R. Schultz showed that 1 of Conjecture 5.2 is not true in the case of A being an
artinian ring [Sc]. I introduce his examples here.

5.1. The Case of Algebras. For a quiver

�Q : 1x �� y��

with relations ρ = {yx − δxy, x2, y2} where δ ∈ k×. Then

k �Q = the free k-algebra k < x, y >

and the ideal

< ρ >=k < x, y > (yx − δxy)k < x, y > +
k < x, y > x2k < x, y > +k < x, y > y2k < x, y >
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Therefore k( �Q, ρ) =< 1, α, β, αβ >k is a local k-algebra, where α = x, β = y. The
multiplication of k(�Q,ρ) is

(a1 + b1α+ b2β + cαβ)(a′1 + b′1α + b′2β + c′αβ)
= aa′1 + (ab′1 + a′b1)α + (ab′2 + a′b1)β + (ac′ + a′c + b1b

′
2 + δb2b

′
1)αβ

with a, b1, b2, c, a
′, b′1, b

′
2, c

′ ∈ k. Then we have

AA : k1
1

α
��

��
��

��

β

1

��
��

��
��

kα

δ

β

��
��

��
��

kβ

α

1��
��

��
��

kαβ

k4
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

��
0 0 0 0
0 0 0 0
1 0 0 0
0 δ 0 0

		

Since it is easy to see that A has the simple socle, A is self-injective. Indeed,
DA =< D1,Dα,Dβ,D(αβ) >k

ADA : kD(αβ)
δ

α
���������

β

1

���������

kDβ

1

β

��������� kDα
α

1����������

kD1

k4
0 0 0 0
δ 0 0 0
0 0 0 0
0 0 1 0

��
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

		

(We calculate the action as follows. (αD(αβ))(β) = D(αβ)(βα) = D(αβ)(δαβ)
= δ implies αD(αβ) = δDβ). Then every isomorphism from AA to ADA is the

form
[
a 0 0 0
b δa 0 0
c 0 a 0
d c b a

]
with a ∈ k×.

On the other hand, the opposite quiver with relations ( �Qop, ρop) is

�Qop : 1xop �� yop
��
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with relations ρop = {xopyop− δyopxop, (xop)2, (yop)2}. AA,DAA are the following

AA : k1
1

α
�

�
�

�

β

1

�
�

�
�

kα

1

β

�
�

�
� kβ

α

δ�
�

�
�

kαβ

k4
0 0 0 0
1 0 0 0
0 0 0 0
0 0 δ 0

��
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

		

DAA : kD(αβ)
1

α
�

�
�

�
�

β

δ

�
�

�
�

�

kDβ

1

β

�
�

�
�

� kDα
α

1�
�

�
�

�

kD1

k4
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

��
0 0 0 0
0 0 0 0
δ 0 0 0
0 1 0 0

		

(Here, −− means the right action). Then every isomorphism from AA to DAA

is the form
[
a 0 0 0
b a 0 0
c 0 δa 0
d c b a

]
with a ∈ k×. If δ = 1, then A ∼= DA as A-bimodules and

A is a symmetric k-algebra. Otherwise, A �∼= DA as A-bimodules and A is not a
symmetric k-algebra. For n, let Mn = A(α + (−δ)nβ)

k2
0 0

(−δ)n 0 �� [ 0 0
δ 0 ]		

Then we have an exact sequence

O −−−−→ A(α + (−δ)n−1β) −−−−→ A −−−−→ A(α + (−δ)nβ) −−−−→ O

O −−−−→ Mn−1 −−−−→ A −−−−→ Mn −−−−→ O

for each n ∈ Z, and

HomA(Mn, A) =
{[ 0 0

a 0
a(−δ)n 0

b a

]
|a, b ∈ k

}
HomA(Mm, Mn) = {[ a 0

b a ] |(−δ)ma = (−δ)na, a, b ∈ k}
(5.3)

And we have an exact sequence

O −−−−→ HomA(M0, Mi) −−−−→ HomA(M0, A) −−−−→

HomA(M0, Mi+1) −−−−→ Ext1A(M0, Mi) −−−−→ O

for i ≥ 1. If −δ is not a root of 1, then by the equation 5.3 we have

dimk Ext1A(M0, M0) = dimk HomA(M0, M1)− dimkHomA(M0, A)+
dimk HomA(M0, M0)

= 1− 2 + 2 = 1
dimk ExtiA(M0, M0) = dimk Ext1A(M0, Mi−1)

= dimk HomA(M0, Mi+1)− dimkHomA(M0, A)+
dimk HomA(M0, Mi−1)

= 1− 2 + 1 = 0
for i ≥ 2

(5.4)
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Proposition 5.5. Assume that −δ is not a root of 1. Let M = A(α+ β), then we
have ExtiA(M, M) = O for all i ≥ 2.

Proposition 5.6. Assume that −δ is not a root of 1. Let M = A(α + β), and
· · · → A → A → M → O a minimal projective resolution, then all syzygy A-
modules ΩnM have k-dimension 2, and they are non-isomorphic each other.

5.2. The Case of Rings. Let A = k( �Q, ρ) be a finite dimensional k-algebra
given in §5.1. Let K be a skew field which is a k-algebra, and B = AK . Then
HomK(K−,KK) and HomK(−K , KK) induce a duality between repK/k( �Q, ρ) and
repK/k(�Qop , ρop). Hence B is a local self-injective artinian ring. According to
Theorem 4.2, ModB is is equivalent to RepR/k( �Q, ρ). For a representation M =
(M, ψM ), ψM (α) is a left K-linear map for any arrow α. Then ψM is represented
by the set of the right multiplications of matrices of K, and their matrix composi-
tions are the opposite compositions of maps (i.e. we take row vectors as elements of
K-vector spaces in this subsection). Therefore by taking the transpose of matrices
in AA of §5.1, we have a representation BB in RepR/k( �Q, ρ)

BB : K1
1

α
		

		
		

		
	

β

1

��������

Kα

δ

β
















 Kβ

α

1��
��

��
��

Kαβ

K4
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0





0 0 1 0
0 0 0 δ
0 0 0 0
0 0 0 0

��

For λ ∈ K×, let Mλ = B(α + λβ), then M is represented by

K2[ 0 λ
0 0 ] 

 [ 0 δ

0 0 ]��

Lemma 5.7. The following hold.
1. HomB(Mλ, Mµ) = {[ a b

0 a ] |λa = aµ, a, b ∈ K}
2. HomB(Mλ, B) = {[ 0 a λa b

0 0 0 a ] |a, b ∈ K}

Lemma 5.8. For n ∈ Z, λ ∈ K× and δ ∈ k×, we have an exact sequence

O → Mλ(−δ)n
ηn−→ B

θn+1−−−→ Mλ(−δ)n+1 → O

where ηn =
[
0 1 λ(−δ)n 0
0 0 0 1

]
, and θn+1 =

[ 1 0
0 λ(−δ)n+1

0 δ
0 0

]
.

Proposition 5.9. If δ ∈ k× and λ ∈ K× satisfy
(i) λ and λ(−δ)n are not conjugate in K× for n ≥ 1,
(ii) for any n ≥ 0 and any b ∈ K, there exists a ∈ K such that λa−aλ(−δ)n = b,

then ExtiB(Mλ, Mλ) = 0 for any i ≥ 1, and EndB(Mλ) is neither left artinian nor
right artinian.

Proof. By Lemma 5.8, for n ≥ 0, we have an exact sequence

O → Mλ(−δ)n
ηn−→ B

θn+1−−−→ Mλ(−δ)n+1 → O.
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Then in order to prove the first part, it suffices to show that

O → HomB(Mλ, Mλ(−δ)n)
HomB(Mλ,ηn)−−−−−−−−−→ HomB(Mλ, B)
HomB(Mλ,θn+1)−−−−−−−−−−−→ HomB(Mλ, Mλ(−δ)n+1) → O.

is an exact sequence for n ≥ 0. By Lemma 5.7 1 and assumption 1 , we have

HomB(Mλ, Mλ(−δ)n+1) =
{
[ a b
0 a ] |λa = aλ(−δ)n+1, a, b ∈ K

}
= {[ 0 b

0 0 ] |b ∈ K}

According to Lemma 5.7 2, we have

ImHomB(Mλ, θn+1) =
{[

0 λaδ+aλ(−δ)n+1

0 0

]
|a ∈ K

}
By assumption 2, there exists a ∈ K such that λa − aλ(−δ)n = bδ−1. For the
second part, by Lemma 5.7 1, we have

EndB(Mλ) = {[ a b
0 a ] |λa = aλ, a, b ∈ K}

Let ∂λ : K → K be a map defined by ∂λ(a) = λa − aλ for a ∈ K. Then ∂λ is an
additive group homomorphism and F = Ker ∂λ is a skew subfield. For any s ∈ F ,
a ∈ K, we have

∂λ(sa) = λsa − saλ
= sλa − saλ
= s∂λ(a)

Therefore K is a left F -vector space and ∂λ is a left F -linear map. Similarly K is a
right F -vector space and ∂λ is a right F -linear map. We have dimF K = dimKF =
∞, because O → F → K

∂λ−→ K → O is exact. It is easy to see EndB(Mλ) ∼= F �K
(this is a trivial extension of F by K).

Proposition 5.10. There are a skew field K, its commutative subfield k, λ ∈ K×

and δ ∈ k× such that K is a k-algebra and that they satisfy the conditions (i) and
(ii) of Proposition 5.9.

Proof. According to [Co1] or [Co2] Section 8, there are a skew field L and λ ∈ L
such that the inner derivation ∂λ : L → L is surjective. Let K be the skew field
L{X} of formal Laurant polynomials, and δ = −X. For 0 �= f =

∑
i νiXi ∈ K, we

denote by degmin f = min{i|νi �= 0}. Then degmin f−1 = −degmin f . Therefore
λ and λXn are not conjugate for n ≥ 1, because degmin λ �= degmin λXn. Let
∂λ,n : K → K be the map defined by ∂λ,n(a) = λa− aλXn. Let g =

∑
i νiX

i ∈ K.
In the case n = 0, there is µi ∈ L such that λµi−µiλ = νi. Let f =

∑
i µiX

i, then
∂λ,0(f) = g. In the case n ≥ 1, f =

∑∞
i=1 λ−igλi−1Xn(i−1). Hence we have

λf − fλXn =
∞∑
i=1

λ−i+1gλi−1Xn(i−1) −
∞∑
i=1

λ−igλiXni

= g.

We take k = the center Z(K) of K. Then k satisfies the desired property, because
of X ∈ Z(K).
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6. Appendix

In this section, we recall some properties of homological algebra without proofs.
The reader see e.g. [Ro] for details.

Definition 6.1 (Category). We define a category C by the following data:
1. A class ObC of elements called objects of C.
2. For a ordered pair (X, Y ) of objects a set HomC(X, Y ) of morphisms is given

such that HomC(X, Y )∩HomC(X′, Y ′) = φ for (X, Y ) �= (X ′, Y ′) (an element
f of HomC(X, Y ) is called a morphism, and denote by f : X → Y ).

3. For each triple (X, Y, Z) of objects of C a map

θ(X, Y, Z) : HomC(X, Y )×HomC(Y, Z) → HomC(X, Z)

(θ is called the composition map) is given.
4. The composition map θ is associative.
5. For each object X of C, there is a morphism 1X : X → X such that for any

g : Y → X, h : X → Z we have 1Xg = g, h1X = h.

Definition 6.2 (Complex). A diagram X� : . . . → Xi−1 di−1

−−−→ Xi di

−→ Xi+1 → . . .
is called a (cochain) complex if di+1di = 0 for all i, that is, Imdi−1 ⊂ Kerdi for all
i. A complex X� is called exact if Im di−1 = Kerdi for all i. Sometimes, we call an
exact sequence for an exact complex. For a complex X�, Hn(X �) = Kerdn/ Im dn

is called the n-th cohomology.

Lemma 6.3. Let O → V0 → V1 → . . . → Vn → O be an exact sequence of k-vector
spaces. Then we have

dimk V0 = Σn
i=1(−1)i dimk Vi.

Definition 6.4. For f : X → Y in ModA, HomA(X, Y ) = the set of left A-
linear maps from X to Y . For M ∈ Mod A, we have the following additive group
homomorphisms

HomA(M, X)
HomA(M,f)−−−−−−−−→ HomA(M, Y )(g �→ f ◦ g)

HomA(Y, M)
HomA(M,f)−−−−−−−−→ HomA(X, M)(h �→ h ◦ f).

Definition 6.5 (Projective, Injective Module). A left A-module M is called A-
projective if for any surjective A-linear map X → Y we have a surjective additive

group homomorphism HomA(M, X)
HomA(M,f)−−−−−−−−→ HomA(M, Y ). Similarly, a left A-

module M is called A-injective if for any injective A-linear map X → Y we have a

surjective additive group homomorphism HomA(Y, M)
HomA(M,f)−−−−−−−−→ HomA(X, M).

Proposition 6.6. A left A-module A is A-projective. In the case of A being a
finite dimensional k-algebra, DA is a injective left A-module.

Proposition 6.7. For a left A-module M , the following hold.
1. M is A-projective if and only if any surjective A-linear map f : X → M splits
(i.e. there exists g : M → X such that gf = 1M ).

2. M is A-injective if and only if any injective A-linear map f : M → Y splits
(i.e. there exists g : Y → M such that fg = 1M).

Proposition 6.8. For a left A-module M , the following hold.
1. There exists a set I and f : A(I) → M such that f is surjective.
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2. There exists a injective A-module E and g : M → E such that g is injective.

Definition 6.9 (Projective, Injective Resolution). For a left A-module M , accord-
ing to Proposition 6.8, we have a surjective A-linear map ε0 : P0 → M with P0

being A-projective. For Ker ε0, we have a surjective A-linear map ε1 : P1 → Ker ε0
with P1 being A-projective. Therefore we have an exact complex

. . . → Pn → . . . → P1 → P0 → M → O,

with Pi being A-projective The complex P� : . . . → Pn → . . . → P1 → P0 is called
projective resolution of M .

Similarly, we have an exact complex

O → M → I0 → I1 → . . . → In → . . . ,

with Ii being A-injective The complex I � : I0 → I1 → . . . → In → . . . is called
injective resolution of M .

When we have a projective resolution

O → Pn → . . . → P1 → P0 → M → O,

we say that the projective dimension of M is at most n, denote by pdimAM ≤ n.
Similarly, when we have an injective resolution

O → M → I0 → I1 → . . . → In → O,

we say that the injective dimension of M is at most n, denote by idimAM ≤ n.
The left global dimension lgldimA of A is the supremum of pdimM of left A-

modules M .

Theorem 6.10 (Higher Extension Groups). The following hold.

1. Let . . . → Pn → . . . → P1 → P0 → X → O be a projective resolution of a left
A-module X. Then for any Y ∈ ModA and any n ≥ 0, HnHomA(P�, Y ) is
determined independent of choice of projective resolutions.

2. Let O → Y → I0 → I1 → . . . → In → . . . be an injective resolution of a left
A-module Y . Then for any M ∈ ModA and any n ≥ 0, Hn HomA(X, I �) is
determined independent of choice of injective resolutions.

3. For X, Y ∈ ModA, we have Hn HomA(PX�, Y ) ∼= Hn HomA(X, I �
Y ) for n ≥ 0,

where PX� (resp., I�
Y ) is a projective (resp., an injective) resolution of X

(resp., Y ).

The additive group Hn HomA(PX� , Y ) ∼= HnHomA(X, I�
Y ) is called the n-th Exten-

sion group ExtnA(X, Y ).

Proposition 6.11. The following hold.

1. If P is A-projective, then ExtnA(P, Y ) = 0 for n ≥ 1.
2. If I is A-injective, then ExtnA(X, I) = 0 for n ≥ 1.
3. For an exact sequence O → X → Y → Z → O in ModA, we have long exact
sequences

O →HomA(M, X) → HomA(M, Y ) →HomA(M, Z) →
Ext1A(M, X) → Ext1A(M, X) →Ext1A(M, X) →
Ext2A(M, X) → . . . ,
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and
O →HomA(Z,M) → HomA(Y, M)→HomA(X, M) →

Ext1A(Z,M)→ Ext1A(Y, M)→Ext1A(X, M)→
Ext2A(Z,M)→ . . . .

Lemma 6.12 (Nakayama’s Lemma). Let A be a ring with unity, J the Jacobson
radical of A, and M a finitely generated left A-module. For a left A-submodule N
of M , if JM +N = M, then N = M .

Definition 6.13 (Minimal Projective resolution). Let M be a finitely generated
left A-module. A projective resolution of M

. . . → Pn → . . .
d2−→ P1

d1−→ P0 → M → O

is called a minimal projective resolution provided that Im di ⊂ JPi−1 for all i ≥ 1.
This resolution does not exists in general. In the case of A being left artinian, a
minimal projective resolution exists for any finitely generated left A-module.

Definition 6.14 (Indecomposable Module). A left A-module M is called indecom-
posable provided that if M = X ⊕ Y , then X or Y = O.

Definition 6.15. Let A and B be k-algebras. The tensor product A ⊗k B is the
k-algebra defined by

(a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′

1A⊗B = 1A ⊗ 1B.

Then we have
(1A ⊗ b)(a ⊗ 1B) = a ⊗ b

= (a ⊗ 1B)(1A ⊗ b).

Definition 6.16 (The Skew Field of Formal Laurant Polynomials). For a skew
field L, let

L{X} = {Σ∞
i=naiX

i|n ∈ Z, ai ∈ L}.

We define the multiplication of Σ∞
i=maiXi,Σ∞

j=nbjXj ∈ L{X} by

(Σ∞
i=maiX

i)(Σ∞
j=nbjX

j) = Σ∞
k=m+n(Σi+j=kaibj)Xk,

and define

degmin(Σ
∞
i=maiX

i) = m

if am �= 0. Then we have

degmin(fg) = degmin(f) + degmin(g)

for non-zero polynomials f, g ∈ L{X}. It is easy to see that L{X} is a skew field.
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