REPRESENTATIONS AND QUIVERS FOR RING THEORISTS
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1. MODULES AND REPRESENTATIONS

Throughout this note, k is a field, and we deal with associative k-algebras.
k-algebra A is a k-vector space with a k-bilinear map pu: A x A — A satisfying

1€ A

w(la,a) =a (Ya € A)

wa,14) =a (Ya € A)
po(px1)=po(1lxpu)

(1.1)

Ax AxA 21 AxA

1| |
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In this note, for a k-algebra A, we fix a complete set {e;|1 < i < n} of orthogonal

primitive idempotents of A. Then we have

A= @ eiAej

1<i,j<n
as a k-vector space and a family of k-bilinear maps

Wijk © eiAej X ejAe, — e;Aey,
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such that

e; € e;Ae; (Vi)
piij(eiyaij) = ai; (Yay; € e;Aej)
pigi(aij, €5) = aij (Yai; € e;Ae;)

ikt © (pije X 1) = prijr o (1 X ptjpr)

(1.2)

Pije X1
eide; x ejAey X e Ae; ———— e;Aey, X e Aey

1><Njkll lmkz

eiAe; x e;Ae R L e;Ae
Conversely, a system (e;de; (1 < 4,5 < n);uin (1 < 4,5,k < n)) of k-vector
spaces satisfying the equation 1.2 defines a k-algebra A = ®1§i,j§n e;Ae; (in this
case we define the other multiplications to be 0).

A (left) A-module M is a k-vector space with a k-bilinear map ¢ : Ax M — M
satisfying

M o ("m
(13) {¢M¢ (1a,m) =m ("m € M)

o (1x 9M) = oM o (1 x 1)

AXAXM&AXM

1><¢JWJ/ J/(blw

oM
AxM —— M

As an equivalent notion, a representation M of A is a k-vector space with a
k-algebra map ¢ : A — Endg (M), where Endy (M) is the k-vector space of k-linear
endomaps of M.

For a complete set {e;|1 <i < n} of orthogonal primitive idempotents of A, we

have
M= P eM

1<i<n
as a k-vector space and a family of k-bilinear maps
(b%[ rejAe; x e, M — e; M
such that

K43

(1.4) { W (ei,mi) =m; (Ym; € ;M)
' oo (1 x ¢h) = ¢pt o (puji x 1)

pkjix1
exAe; x ejAe; X ;M ——— e Ae; x e; M

1ol | [

9ig
exAe; x e; M e ex M
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As an equivalent notion, a family (e;M)1<i<n of k-vector spaces with k-linear
maps wf\f s e;Ae; — Homyg/(e; M, e; M) such that

i (ei) = 1e,m
(1.5) Vi (aijbjr) = Vi (ai;) o Vi (bjk)

\4 v
( Qi5 € eiAej, bjk S ejAek)

ekM

M(aijbjk
w%(bg’k)l W\ )

€; M —>M eiM
wij (aij)

where Homy(e; M, e; M) is the k-vector space of k-linear maps from e; M to e; M.

Example 1.6. For a left A-module Ae,, a family (e;Ae,)1<;<, with k-linear maps
wéer : e;Ae; — Homy(e; Ae,, e;Ae,.) defined by wgeT(aij) = pijr(aij, —).
ejAe, pigr(@ig, ), eide, (ai; € e;Aej)
For representations M, N, an A-homomorphism f : M — N is a k-linear map
satisfying

(1.7) foyvM(a)=¢"(a)of ("ac A)

M(l
Mw(>M

7| |7

 —

YN (a)

Then we have a family (f; : ;M — e;N)1<i<p of k-linear maps satisfying

(18) fi o 1#%(@@) = (bg(aij) o fj (Vaij (S eiAej)

M (ai;
ejM M eiM

| |1

€jN S €iN
o (aij)
Conversely, it is easy to see that a system (e;M (1 < i < n);wf\f (1<i,j<n))
of k-vector spaces defines a left A-module M = @, ,,, e;M (in this case we define

the other actions to be 0), and that a family ( fi)lg_ig_n of k-linear maps defines an
A-homomorphism from M to N.

Example 1.9. For idempotents e,, e; of A, an A-homomorphism u(—, bs,) : Aes —
Ae,. is obtained by a family of k-linear maps ;s (—,bs,) : €;Ae, — e;Ae, (1 <14 <
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Hijs(aij,—)
A AA LN

ejAeg e; Aeg

Hjsr(_7bs7‘)J/ J/Hisr(_J)sr)

wijr(aij,—)
I

ejAe, e;Ae,

Theorem 1.10. Let Rep A be the category consisting of M = (M(i) (1 < i <
n); il (1 <i,5 < n)) satisfying
biit (e1) = Larg)
Yin (@ijbin) = iy (ais) o ¥y (bjn)
(vaij S 61'A€j,vbjk S €jA€k)

M(k)

w%(bjk)l K )

M(j %eiMi
U) Y (aij) (0

as objects, and of (f; : M(i) — N(i))1<i<n Satisfying
fiowii (aij) = ¢35 (aij) o 5

Mg,
M) S M)

| |

N(j) ——— N@)

o3 (aiz)

for M, N as morphisms. Then Rep A is equivalent to the category Mod A of left
A-modules.

For A-modules M, N, we denote by Hom (M, N) the set of A-homomorphisms
from M to N.

Lemma 1.11. For a left A-module M, we have
Hom 4 (Ae;, M) = e; M
as e; Ae;-modules.

Proof. Let 6 : Homy (Ae;, M) — e; M be the map defined by (f) = f(e;) for f €
Hom 4 (Ae;, M), and 1 : e,M — Homy (Ae;, M) the map defined by n(m;)(ae;) =
am; for m; € e;M and ae; € Ae;. Then 0,1 are A-homomorphisms and 0n = 1,
nd = 1. O

Corollary 1.12. Let J be the Jacobson radical of A. Assume that A is a basic
artinian k-algebra, that is, Ae; 2 Ae; fori # j. Then we have

eiAei/eiJei Zflzj

Homx (Ae;, Aej/Jej) = {O ey
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Proposition 1.13. Assume that A is a finite dimensional k-algebra satisfying A/ J
kX Xk (ie, e;Ae;fe;Je; 2k for any 1 <i < n). For a left A-module M,
we have
dimy e, M = the appearance number of simple type Ae;/Je;
in a composition series of M.
Proof. Let
O=M_,CMyCcM,C---CM,=M
be a composition series. Then we have an exact sequence
O — Homy (Ae;, M;—1) — Hom 4 (Ae;, My) — Hom s (Ae;, My/My—1) — O
for 1 <t < r. Therefore we have
dimy e, M = Z dimy, Hom 4 (Ae;, My /M, _1).
0<t<r

By Corollary 1.12, we get the statement. |

Example 1.14. In the case of A/J = k x --- X k, we may assume that A =
(@7 ke;)®J. Asimple left A-module Ae,./ Je, is described by (M (i); ;) € Rep A

as follows.
M) = k 1.f z'zr
Oifi#r

A if (4,7) = (r,7r), ai; = Aer
wﬁ(aij) =<0 if (¢,7) =(r,7),a € e Je,
0 otherwise

2. QUIVERS AND PATH ALGEBRAS

Definition 2.1. A quiver Q = (Qo, ®Q1) is an oriented graph, where Qg is a set
of vertices and Q1 is a set of arrows between vertices. We use h : Q7 — Qo,
t: Q1 — Qo the maps defined by h(a) = j, t(o) = ¢ when « : i — j is arrow
from the vertex i to the vertex j. A quiver Cj = (Qo, Q1) is called a finite quiver if
#Qo, #Q1 < . )

A path w = (i, ..., a1|j) from the vertex j to the vertex i in the quiver @ is
a sequence of ordered arrows ayq, ..., a, such that j = t(aq), h(a;) = t(ai+1) (1 <
i <r—1),h(a,) =i. In this case, j (resp., i) is called the tail t(w) (resp., the head
h(w)) of w, and r is called the length of a path w. For every vertex i, the path
e; = (i| |i) of length 0 is called the empty path. A non-empty path w is called an
oriented cycle if h(w) = t(w).

Definition 2.2. Let Qy = {1,...,n} and Q1 a set. For any i, € Qo, ei|é|ej is the
set of paths w in @ with ¢(w) = j, h(w) = 4. For any i, 7,k € Qo with ¢;|Qle; # ¢,
e;|Qlex # ¢, we define a composition map gk : €;|Qle; X e;|Qlex — €;|Qlex by
setting

,uijk((ﬂas, . ,Otr+1|j), (j|0ér, . ,041|]€)) = (i|0{5, . .,041|]€).
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Then for any i, j,k,l € Q¢ with ei|é|ej £ ¢, ej|C_2’|e;C # ¢, ex|@le; # ¢, we have

— — — X1 — —
eilQle; x e|Qler x ex|Qler —2 e;|Qlex x ex| Qe

1><Mjkll J/Mikl
€i|é|€j x €j|é|€z SRAEI €i|é|€z

We denote by eikéej the k-vector space with the paths from the vertex j to 4
as a basis if ei|é|ej #+ ¢, and eikéej =0 if ei|é|ej = ¢. For any 4,7,k € Qp, we
define a k-bilinear map fi;;; eikéej X ejkéek — eikéek by setting

ijk AoV, Adpw) = Ay Ay vw
Wlth )"U,)\w € k FOI' any 7;7j7k,l S QO, we have

— — — X1 N N
eikQe; x ejkQey x exkQe Mgk %7, eikQer X exkQe;

1><Mjkll lﬂikl
- - it .
eikQe; x ejkQey “ ekQe

Then, by 1.2, k‘(j = ®1§i,j§n eikéej becomes an associative k-algebra. This alge-
bra is called the path algebra of Cj over k.

We often simply write a.,...,aq for (i, ..., a1j).

Proposition 2.3. For a finite quiver Cj, k‘C_j is a finite dimensional k-algebra if
and only if Q) has no oriented cycle.

Example 2.4. For a quiver
- a B
Q:1—=2——>3
we have

elkéel =< e > egkéel =< a > egkéel =< Ba >

elk‘@eg =0 egk‘éeg =< ey > 63](3@62 =< ﬂ >k
61](3@63 =0 62](3@63 =0 63](3@63 =< e3 >
Then we have
. kK 0 0
kKQ= |k k O
k k k
Example 2.5. For a quiver
G:1__22—>3
B

we have
elkéel =<e; >k egkéel =< a,f >k egkéel =< ya, V0 >k
elk‘Qeg =0 62](3@62 =< ey >k 63](3@62 =<7 >k
61](3@63 =0 62](3@63 =0 63](3@63 =< e3 >k
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Example 2.6. For a quiver

Then we have

Cj: 1 —— QQB
we have

elkéel =< ey >y 62](3@61 =<a,0"a:n N>,
e1kQes = O eskQes =< e, 0" :mn €N >

o i)

Lemma 2.7. Let A be a ring, O — X —Y — Z — O an exact sequence of left
A-modules. Then we have

Then we have

1

kQ

pdim, Y < max{pdim 4 X, pdim 4 Z}
Proposition 2.8. For a finite dimensional k-algebra A, the following are equiva-
lent.
1. lgldim A < n.
2. pdimy A/J < n.
In particular, the following are equivalent.

1. A is hereditary.
2. J 1s projective.

3. lgldim A < 1.

4. pdim, A/J < 1.

Proposition 2.9. Let Q be a finite quiver without oriented cycles. Then k‘(j s
hereditary, and k:Q/JkQ =2k x---xk, where Jig s the Jacobson radical of kQ).

Proof. Let Qp = 1,...,n, then 1 = e; +... +¢,. Let J; be the vector space
spanned by paths of length > 1, then there exists ¢ > 0 such that Jfl = 0.

Therefore Jy. C Jy 5. It is easy to see that kQ/J,. = key x --- x ke,, as rings. Thus

we have J; = chj' For i € Qq, since Q is finite, we may assume that the set of
arrows « with ¢(a) =i is {aq,...,a,}. Then we have

Jie; = EBZT:IkQ'ai.

Since p(—, ;) : k@eh(ai) — k‘(j is an isomorphism, Jeri is a projective left k:(j—
module, and hence J, 5 is a projective left k‘@—module. O

Definition 2.10. Given a quiver Q = (Qo,Q1), a representation M = (M (i); ™)

of @ over a field k is a family (M ())icq, of k-vector spaces together with a fam-

ily ( #(a) : M(j) — M(i))jireQ of k-linear maps. A representation M =
i€EQ1

(M (i);9™M) is called a finite dimensional representation if M (i) is a finite dimen-
sional k-vector space for every i € Q.
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For (M(i);4p™), (N(i); "), a morphism f : (M (i); ™) — (N(i);9") is a fam-
ily (fi: M(i) = N(i))icq, of k-linear maps satisfying that we have a commutative
diagram

for any j =i € Q.
We denote by Rep,, @ (resp., rep;, Q) the category of representations (resp., finite
dimensional representations) of @ over k.

Theorem 2.11. For a ﬁmte quiver Q, Repk Q s equivalent to Rep k:Q, and hence
it is equivalent to Mod k:Q Moreover, repy, Q s equivalent to the category modgq k:Q
of finite dimensional left k:Q modules.

Sketch of The Proof. For any idempotents e;, e; of ké7 all elements of eik‘éej are
k-linear combinations of paths from j to ¢. Then it is easy. O

Proposition 2.12. For any collection {(My;9¥™M>)}ren of representations of Q

over k, (@rea Mr; Biren ™) (resp., ([Taea Mai[Tnen ¥™*)) is the direct sum
(resp., the direct product) of {(Mx; M )} ren.

Example 2.13. For a quiver
- a B
Q:1—=2——3
k‘@ =< e1,€9,€3,, 3, B >p. A representation M of Q over k is the following

M M
M) 2 ) 9 3
Then we define M = M (1) & M(2) & M(3) to be a left A-module as follows. For
m = (my,mg,m3) € M and a = Aje; + Ageg + Azez + Ao + A\gff + Mg fa € kQ,
we define
= (m, Aema + Xt ™ (@)(m1), Asms + A" (8) (m2) + Asat?™ (B)0™ () (ma))

By the standard technique of linear algebra, all indecomposable representations
are up to isomorphisms the following

Mi: O—-0—k My: O—-k—k My: k—k—k
My: O—-k—0O Ms: k—k—0O Mg: k—0O—0O

It is easy to see that we have composition series of M3 and M5

R p—
oo i | ||
I R P



REPRESENTATIONS AND QUIVERS FOR RING THEORISTS 9

Then M1 = k@eg/Jeg,Mg/Ml = kéeg/Jeg,Mg/Mg = k@el/Jel, and M4 =
k@eg/Jeg,M5/M4 = kéel/Jel, where J is the Jacobson radical of k‘C_j More-
over, k:Qel Ms, Jes = JM3 = k‘Qeg =~ My and Jeg = JMy = k‘Qeg

We often write modules by using composition series

a 1
M : 3 Mgllgﬁ M3:|26 My: 2 M5Z|§z Mg : 1

3. QUIVERS WITH RELATIONS

Definition 3.1. A relation o on a quiver C_j over a field k is a k-linear combinations
o =Y ,_; Mwy, where w are paths from j to ¢, \;, € k. A pair (@, p) is called a
quiver with relations over k if p = {01, ..., 04} where o; is a relation for every i. We
denote k‘(é,p) = k:C_j/ < p >, where < p > is the two-sided ideal of kQ generated
by relations of p. We denote by J the two-sided ideal of k‘(j generated by arrows.

Proposition 3.2. Let (Q7 p) be a finite quiver with relations over k. If there is t
such that J,. C< p>C J3, then J1 = rad(k(Q, p)), where J is the image of Jy
in k(Q, p).-

Proof. Let A= k(Q,p) and J = rad(k(Q, p)). Since 7+t =0, we have J, C J. Tt
is clearly that A/J, = kQ@/Jy is semi-simple. Then (J + J4)/J4 = O, and hence
Jy CJ. O

Definition 3.3. For a quiver with relations (Q p) over k, Repk (@, p) (resp.,

repk(Q p)) is the full subcategory of Reka (resp., repy Q) consisting objects
M = (M(@i);9v™) with vM (o) = 0 for any relation o of p. Here M (w) =
M () .. M (ay) for w = a,. ... a1, and YM (o) = S\ PM (wy) for o = Tidw;.

Theorem 3.4. For a finite quiver with relations (Q7 p) over k, Repk(é7p) (resp.,
rep,. (@, p)) is equivalent to Mod k(Q, p) (resp., modsq k(Q, p)).

Sketch. According to Theorem 2.11 and the explanations before the theorem,
M (o) = 0 means that oM = O when we consider M = @, M(i) as a left

k@—module. O

Definition 3.5. For a quiver C_Z the opposite quiver QOP is the quiver with all
arrows reversed. For a quiver with relations (@, p) over k, (Q°,p°) is similarly
defined. Then k(Q, p)°P = k(G°P, p°P).

Let D = Homy(—, k). For a representation M = (M(i);1™) € Rep,(Q, p),
DM = (D M(i); 4P M), where y)° M () = DM (o). Then D M is a representation
of (@0, p°P) over k.

Proposition 3.6. For a quiver with relations (Q7 p) over k, D induces a duality
between rep,, (Q, p) and rep,, (Q°P, p°P).

Remark 3.7. For a k-algebra A, idempotents e;, e; and a;; € e; Ae;, we have a left
A-homomorphism pi(—, a;;) : Ae; — Ae;. Then we have a commutative diagram in
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Mod A°P

Hom g4 (/’L(_va’ij)vA)

Hom 4 (Ae;, A) Homy (Ae;, A)

! |

ejA _— eiA
wlaij,—)

In Rep, Q7 we have also the same result.
Example 3.8. For a quiver
Cj P12 £, 3
with a relation p = Sa. Then k‘(j =< ey, e9,e3,a, 3, fa >, and the ideal < p >=<

Ba >p.. Therefore k‘(é,p) =< €,69,83,@, 3 >;. Let A= k:(C_j,p)7 then we have
€1A€1 =<€e; > 521451 =< a > €3A€1 = O_
€1A52 =0 521452 =< ey > €3A€2 =< ﬂ >k
€1A53 =0 521453 =0 €3A€3 =< e3 >y
Since this algebra is a factor of the path algebra in Example 2.13, all indecomposable
representations are up to isomorphisms the following
Mi: O—-0—k My: O—k—k
My: O—-k—0O Ms: k—k—0O Mg: k—0O—0O
The opposite quiver of with relations (G°P, p°P) is

N P op
QP: 1=—2<—"3

with p°P = a°P3°P. Therefore we have

Aes = Aes/Jes = My  Aey = D(ezA) = My
A€2/J€2 = M4 Ael = D(GQA) = M5 D(elA) o~ Ael/Jel o~ Mﬁ

2 1
M: 3 M,: I3B My: 2 Ms: Ig Mg : 1

Since projective resolutions of Aey/Jey, Aea/Jea, Aes/Jes are

0] Aes Aeg —— Aey —— Aey/Jeg —— O
0 3 p— & —— 1 ——0
0] Aes Aeg —— Aey/Jes —— 0]

0 3 p— 2 — 0

O Aes Aes O

0] 3 3 0]

by Proposition 2.8, Igldim k‘((j, p) = 2. Moreover, an injective resolution of 4 A4 is
O —— A A——>D(e2A) ®D(e3A)> —— D(e3A) ——=D(e14) —= O

Since pdim 4, D(exA) = pdim 4, D(e3A) = 0 and pdim 4 D(e; A) =2, A is an Auslan-
der regular k-algebra.
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Example 3.9. For a quiver

with a relation p = {Sa}. Then

and the

k‘C_j =< ey, e3,q,0, (ﬂa)h, (aﬂ)la(ﬁa)m,ﬂ(aﬂ)" ch,l,m,n e N>,
ideal
< p>=< ()", (af) T, a(Ba)™, B(af) : hyl,m,n €N > .

Therefore k:((j, p) =< €1,8,83,a,[,aB >. Let A= k:(C_j,p)7 then we have

511451 =< e] >k 521451 =< a >
e1Aey; =< 8 >k s Ay =< €2, af >k

The opposite quiver of with relations (QOP, p°P) is

a’P

Qor:1=__2
B®

with a relation p°? = {a°P3°P}. Hence we have

1 1 |23 [(IJ]
Aey: e k k Aes 2 D(egA): 1 : ~ k2
2 0 lo [10]
2 O
D(e1A) : |1B :k k
1
0 0
Aey/Jer: 1: k O Aey/Jes: 2: O k
0 0

Since projective resolutions of Aey/Jey, Aes/Jeqs are

O A61 A€2 e A61 e Ael/Jel — 0
2
0] |}1 Ilﬁ s |}1 s 1 — 0
2 | 2
2
O A61 A€2 — Aeg/Jeg — O
2
O |iv IIB —_— 2 —_— O
2 e

by Proposition 2.8, lgldim A = 2. A projective resolution of D(e; A) is

0

0

Ael A€2 A€2 — D(elA) — 0
2 2
|8 |8 2
lo |1 |1 e |13 — 0
2

Moreover, an injective resolution of 4 A is

O —— 4 A——>D(e3A)? ——=D(e24) ——=D(e; A) ——= O

11

Since pdim 4 D(e;A) = 0 and pdim, D(e;A) = 2, A is an Auslander regular k-

algebra.
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Definition 3.10. Let A be a ring, and V a A-bimodule. We denote by V®" =

n times

———

V ®@p - @a V. Then the tensor ring T(A,V) is A @ (D,,>, V") as an abelian
group, and its multiplication is induced by the canonical A-bilinear maps

VOM@\ VO VOMEn for m n > 0.

Lemma 3.11. Let A be a ring, V a A-bimodule and A a A-algebra. For a A-
bimodule homomorphism f : V. — A, there exists a unique A-algebra homomor-
phism f : T(A, V) — A such that f|y = f.

Sketch of The Proof. Let ¢ : A — A be a ring homomorphism. A map f :
T(A,V) — A is defined by

flao+Y > o @ @viy) = dlao) + Y > fving) .- f(visg)
i>1 i>1
forag+3 ;51 22, vi1j @ - ®@vy; € T(A, V). Then this satisfies the desired property.
O

Definition 3.12. For a k-algebra A = [] ;k and A-bimodule V, the quiver
QT(A7V) of T(A,V) consists of Qpa,vy0 = {1,...,n}, and of the number of ar-
rows from the vertex ¢ to j which is dimy e;Ve;, where e;,e; correspond to i, j.

For a finite dimensional k-algebra A with A/Js 2= []"_,k, the quiver Q4 is the
quiver QT(A/JA,JA/Ji)-
Proposition 3.13. For a k-algebra A = [k and A-bimodule V, there is a k-
algebra isomorphism ¢ : T(A,V) — k@T(A7v).

Proof. Since kQ = (&7, \ie;) @ Jo., we identify the idempotents of A/J with them
of k‘C_j For 1 <14,j < n, we take a k-basis {v;;x|1 < k < n;;} of ¢;Ve;, and denote
by ay,, the arrow in k‘Q’T(A’V) corresponding to vijx. A map ¢ : T(A, V) — Ais
defined by

(b(z Aiei + Z AijUil; @ -+ & uiij) = Z)\iei + Z )\ijozu“j e Oy
=1 =1

i>1,7 i>1,7
for Y0 Ne; + Zizl,j AijUiy @ -+ @ u; € T(A, V), where u;ji, are elements of

the above basis. It is easy to see that dimy, e;(€D, -, VE")e; = e;kQe;. Hence ¢ is
bijective. O

Theorem 3.14. Let A be a finite dimensional k-algebra with A/Ja = [[i— k.
Then the following hold.

1. There is a surjective ring homomorphism ¢ : T(A/Ja, Ja/J3) — A such that
Hinl(A)(JA/J%)i C Kero C (Ja/J3)?, whererl(A) is the Loewy length of A
(i.e. 11 A = min{t|J4"" = 0}).
2. A k‘(é,p) with J4 C< p>C J3 for some r, where Q=0qu.
Proof. 1. By the assumption, we may assume that a split injective k-algebra homo-
morphism ¢g : A/J — A, A/J = & ke; and A = A/J®J with J = J4 the Jacob-
son radical of A. For any e;, e;, we choose elements 751, ..., 7ijn,; of e;Je; such that
{Tij1,- - Tijn,, } is a k-basis of e;(J/J?)e;. Let ¢y : J/J? — Abe an A/J-bimodule
homomorphism defined by ¢1(7;jx) = 7ijk, then by Lemma 3.11, there exists an
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A/ J-algebra homomorphism ¢ : T(A/J, J/J?) — A such that q~5|A/J@J/J2 = doDP1
is injective. Therefore Hinl(A)(JA/Ji)i C Ker¢ C (Ja/J%)?, because of J*H1 =0
for t = rl(A). If r1(A) = 1, then ¢ is clearly bijective. In order to prove that
¢ is surjective, it suffices to show that for any m > 1 and any z € J™, there
exists y € (¢(J/J?))™ such that x —y € J™FL. In the case of m = 1, it
is trivial. In the case of m > 2, for x € J™ we have x = ), v;w;, where
v; € J and w; € J™ 1. Then there are y; € ¢(J/J?) and 2z; € (¢(J/J?))™ !
such that v; —y; € J? and w; — 2 € J™. Since v; € J and z; € J™ L,
viw; — yiz = vi(w; — z;) + (v; —y;)z € J™! and hence x — Y, y;z; € J™ L.

2. According to Proposition 3.13, we have a surjective k-algebra homomorphism
¢ kQ — A, where Q = Q4. Let t = r1(A) + 1, then ¢ induces a surjective
k-algebra homomorphism ) : k‘(j/ Jt — A. Since k:C_j/ JY is a finite dimensional
k-algebra, Ker is a finitely generated ideal. Hence Ker ¢ is a finitely generated
ideal < 01,...,04 > of ké7 because J} is a finitely generated ideal of k‘C_j Since
op = Zij eiorej, there is a set p of relations such that Ker ¢ =< p >. O

Lemma 3.15. Let A be a hereditary finite dimensional k-algebra, I a two-sided
ideal of A with I C J3. Then A/I is not hereditary.

Proof. Consider the exact sequence in Mod A/T

By Nakayama’s Lemma, I/IJ4 # O. Since Ju is A-projective, Ja/IJs is A/I-
projective. I C J3 implies I/IJs C J3/1Ja = Jay1(Ja/IJa), If Ja/T is A/I-
projective, then there is n : Ja/I — Ja/IJa such that 7p = 1;,,;, and then
Jasr(Ja/IJa) ® Imn = Ja/IJ4. By Nakayama’s Lemma, Imn = J4/IJa and
I/IJy = O. This is a contradiction. Hence Ju/I is not A/I-projective. By
Proposition 2.8, we get the statement. |

Proposition 3.16. Let A be a finite dimensional k-algebra with A/ J4 = kx---xk.
Then the following are equivalent.

1. A is hereditary.
2. A2EKkQy.

Proof. 1 = 2. Let f : Ae; — Ae; be a non-zero A-homomorphism for primitive
idempotents ¢, j. If f is not an isomorphism, then f is a monomorphism, because
Im f is projective. Then there is no path Ae;, — -+ — Ae;, = Ae;, of non-zero
A-homomorphisms which are not isomorphisms. Hence Cj has no oriented cycle,
k‘Cj is a finite dimensional k- algebra. By Lemma 3.15, A & kQA.

2 = 1. By Proposition 2.9, it is trivial. O

4. BASE EXTENSIONS AND REPRESENTATIONS

Let k be a field and R a k-algebra. For a quiver with relations (Q,p) over a
field k, let e1,...,e, be the set of idempotents corresponding to vertices in @,
A =k(Q,p) and AR = R®,k(Q, p). Then we can consider that A" = P Rw

and rw = wr for any r € R and any path w in Q

path w
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A left Af-module M is a left A-module, and it is a direct sum @P;_,e; M as an
R-module. For any o € ()1, we have

a(r ) (ar)

ﬁ

~—

(am
with 7 € R, m € M. Then v (a) : ¢;M — e; M is a left R-linear map, and we get
a system (e; M; M) of left R-modules satisfying

1. e;M is a left R-module for any 1.
2. pM () is a left R-linear map for any o € Q.
3. vM (o) = 0 for any relation o € p.

For a left Af-homomorphism f : M — N, we get left R-linear maps e;f = f; :
e;M — e;N (1 <i<n)such that
(4.1) fiopM(@) =y (a)o f;
for any a € Q1.

M(a
€jM w—()> eiM

| |

e;N —— N
PN ()

Theorem 4.2. Let A = k‘(ém), and let RepR/k(Q, p) be the category consisting of
M = (M(i) 1 <i<n);vM(a)(a € Q) satisfying

M () is a left R-module for any i.
2 M () is a left R-linear map for any a € Q.
3. YM (o) =0 for any relation o € p.

as objects, and of (f; : M(i) — N(i))1<i<n Satisfying
fiow™M(a) =¢"(a)o f;

M) 2 )

| |

N(j) T N(i)

for M, N as morphisms. Then Repg (Q,p) is equivalent to the category Mod AR
of left AR-modules.

Sketch of The Proof. By the above, we can construct a functor from Mod AT to

Repr,(Q,p). Conversely, given M = (M(i);9™) € Repg/i(@,p), let M =
. M(i). For any r € R, any arrow « : @ — j and m € M (i), we define the
left Af-action

(raym =ry™(a)(m)
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Then for any r, s € R, any arrow a: i — j,3: j — [ and m € M (i), we have

(s8)((rajm) = (s8)(ry™ () (m)

(s ¥ (BN v (@) (m))
= s(rp™ (8) (¥ (@)(m)))
=sr( ¥(B) ¥ (a))(m))
= (srfa)(m)

Therefore M becomes a left A%-module. For a family (f; : M (i) — N(i))1<i<n of
morphisms , let f = @7, f;. For any r € R, any arrow « : i — j and m € M(3),
we have

firam) = f;(r™ (o) (m))

)
(

= r(fj o™ (a))(m)

=r( ¥(a)o fi)(m)

= (ra)fi(m)
Hence f becomes a left A®-homomorphism. It is easy to see that this construction
defines a functor from Repp (@, p) to Mod AR and it is an equivalence. O

5. EXAMPLES RELATED TO TACHIKAWA’'S CONJECTURE

Conjecture 5.1 (Nakayama’s Conjecture). Let A be a finite dimensional algebra
over a field k, and

O— JA—=1°>T1"— ..

an injective resolution of a left A-module 4A. If all I' are projective, then A is
self-injective.

Tachikawa showed that the above conjecture is equivalent to the pair of the
following two conjectures.

Conjecture 5.2 (Tachikawa’s Conjectures). Let A be a finite dimensional algebra
over a field k, M a finitely generated left A-module.

1. If A is self-injective and Ext’ (M, M) = O for all i > 1, then M is projective.
2. If Ext4, (DA, A) = O for all i > 1, then A is self-injective.

R. Schultz showed that 1 of Conjecture 5.2 is not true in the case of A being an
artinian ring [Sc]. T introduce his examples here.

5.1. The Case of Algebras. For a quiver
with relations p = {yx — éxy, 2%,y*} where § € k*. Then

k‘(j = the free k-algebra k < x,y >

and the ideal
<p>=k <z,y>(yxr—dzy)k <z,y >+
k<zy>z’k<az,y>+k<z,y>y’k<az,y>



16 JUN-ICHI MIYACHI

Therefore k(Q, p) =< 1, 8, a8 > is a local k-algebra, where o = T, 3 = 3. The
multiplication of k(Q, p) is

(al 4+ bia+ ba + caB)(a’l + bia + by + ' af)
=aa'l + (ab} + a’'by)a + (aby + a'by) B + (ac’ + a’c + byl + dbab) )8

with a,by,ba,c,a’,b],b5,c € k. Then we have

1000 0000
AA: k1 |:00001|Ck‘4:>|:10001|
) 0010 0600

Since it is easy to see that A has the simple socle, A is self-injective. Indeed,
DA=<D1,Da,Dg3,D(af) >

ADA: kED(ap) {é

(We calculate the action as follows. (aD(af))(8) = D(af)(Ba) = D(af)(dapf)
= § implies aD(aB) = § D 3). Then every isomorphism from 4A to 4 D A is the
a 000
form [’; % 00| with a € k.
dcba
On the other hand, the opposite quiver with relations (QOP, p°P) is

QOP s O C 1 Q y°P
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0
A k1 {6
/N 0
1 N 1
@ N
Ve N
ko kB
N Ve
a
1N )
N Ve
kap
0000 0000
DAy : kD(aj {1000} A {0000}
| EDEd) HHISLION
///a p \\
kDS kDa
\\ B [e% //
1\\ ///1
kD1
(Here, —— means the right action). Then every isomorphism from A4 to D Ay
a0 00
is the form | %¢ 0 0| with a € k*. If § = 1, then A 2 D A as A-bimodules and
dc b a

A is a symmetric k-algebra. Otherwise, A 2 D A as A-bimodules and A is not a
symmetric k-algebra. For n, let M,, = A(a + (=9)"f)

[(%m 0 (:k2:> 5 9]

Then we have an exact sequence

O —— Ala+(=0)"7'p) A Ala+(=0)"f) —— O

0O —— M, 4 A M, — 0
for each n € Z, and

0
Homy (M, A) = {[a( 5" 8] la,b € k:}
-0)"a = (=d0)"a,a,b € k}

(5.3)
Hom s (M, M) = ‘g

And we have an exact sequence

0] —— Homu (Mo, M;) —— Homuy(My, A) ——
Hom (M, My 1) —— Extl (Mo, M;) —— O
for ¢ > 1. If —¢ is not a root of 1, then by the equation 5.3 we have
dimy, Extl (Mo, My) = dimy Homy (M, M;) — dimy, Hom 4 (Mg, A)+
dimy, Hom 4 (Mo, M)
‘ = 1-242=1
dimy, Ext’y (Mo, My) = dimy Ext! (Mo, M;_1)

(5.4) = dimy Hom (Mo, M;41) — dimy, Hom 4 (Mo, A)+

dimk HOIHA (Mo, Mi—l)
= 1-241=0
for71>2
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Proposition 5.5. Assume that —d is not a root of 1. Let M = A(a + f3), then we
have Exty (M, M) = O for all i > 2.

Proposition 5.6. Assume that —§ is not a root of 1. Let M = A(a + 3), and
- —= A > A —> M — O a minimal projective resolution, then all syzygy A-
modules Q" M have k-dimension 2, and they are non-isomorphic each other.

5.2. The Case of Rings. Let A = k(Q,p) be a finite dimensional k-algebra
given in §5.1. Let K be a skew field which is a k-algebra, and B = AX. Then
Homg (k—, k K) and Homg (—, K ) induce a duality between repK/k(Q, p) and
IePg (QOP,pOP). Hence B is a local self-injective artinian ring. According to
Theorem 4.2, Mod B is is equivalent to Repg (@, p). For a representation M =
(M, M), M () is a left K-linear map for any arrow a. Then % is represented
by the set of the right multiplications of matrices of K, and their matrix composi-
tions are the opposite compositions of maps (i.e. we take row vectors as elements of
K-vector spaces in this subsection). Therefore by taking the transpose of matrices
in 4 A of §5.1, we have a representation pB in RepR/k(Q, 1))

[=lelele}]
oRoOo
[E——)
>
—
[=lelele]
[eleleje]
oo
SO O
[E—)

01
BB: K1 {88
L L 00
Ka Kp
S
5 1
Kap

For A € K*, let M) = B(a + A\3), then M is represented by

331 C K2 JI183]
Lemma 5.7. The following hold.
1. Homp (M, M,) = {[& ’]|\a = ap,a,b € K}
2. Homp(My, ) {[§¢%t]la,be K}

Lemma 5.8. Forn € Z, A € K* and § € k*, we have an exact sequence

O — M)\( s)m —> B n—+1> M)\(_[g)n+1 — 0
0
9

1
where n, = [ 820907 0], and 41 = [g )\(_6)%1 ] :
0 0

Proposition 5.9. If § € k* and A € K* satisfy
(i) A and A(=8)™ are not conjugate in K> forn >1,
(ii) for anym > 0 and any b € K, there exists a € K such that Aa—a\(—3)" =,

then Extiy(My, My) = 0 for any i > 1, and Endg(M)) is neither left artinian nor
right artinian.

Proof. By Lemma 5.8, for n > 0, we have an exact sequence

O — M)\( s)m —> B n—+1> M)\( §)n+1 — 0.
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Then in order to prove the first part, it suffices to show that

O — Homp(My, My(_gyn) 2220000, Hom g (My, B)

70’71,
Homp (Mx,0n+1) Homp (Mj, M)\(_(s)n+1) — 0.
is an exact sequence for n > 0. By Lemma 5.7 1 and assumption 1 , we have

Homp(My, My(_gn+1) = {[&b]|Aa = aA(=6)""!,a,b € K}
={[8¢lb e K}

According to Lemma 5.7 2, we have
ImHomB(MA,9n+1) = { [8 )\a(5+a)\é—§)n+1:| |a e K}

By assumption 2, there exists a € K such that Aa — aA\(—6)" = bd~!. For the
second part, by Lemma 5.7 1, we have

Endg(M,) ={[gt]|Aa=aX a,bec K}

Let 05 : K — K be a map defined by 0)(a) = Aa — aX for a € K. Then 9, is an
additive group homomorphism and F' = Ker 9y, is a skew subfield. For any s € F,
a € K, we have

Ox(sa) = Asa — saA
= sha — sa\

= s0x(a)

Therefore K is a left F-vector space and 0, is a left F-linear map. Similarly K is a
right F-vector space and ), is a right F-linear map. We have dimp K = dim Kp =

00, because O — F — K -2 K — O'is exact. It is easy to see Endp(M,) =2 Fx K
(this is a trivial extension of F' by K). O

Proposition 5.10. There are a skew field K, its commutative subfield k, A € K*
and § € k* such that K is a k-algebra and that they satisfy the conditions (i) and
(i) of Proposition 5.9.

Proof. According to [Col] or [Co2] Section 8, there are a skew field L and A € L
such that the inner derivation 0y : L — L is surjective. Let K be the skew field
L{X} of formal Laurant polynomials, and § = —X. For 0 # f =Y. 1, X' € K, we
denote by deg,,;, f = min{i|ly; # 0}. Then deg,,;, f~' = —deg,,;, f- Therefore
A and AX™ are not conjugate for n > 1, because deg,,;, A # deg,,;, AX". Let
Oxn : K — K be the map defined by 9y »(a) = Aa —aAX". Let g = >, ;X' € K.
In the case n = 0, there is p; € L such that Ay — pA = v;. Let f =", w; X, then
Oo(f)=g. Inthecasen > 1, f =37 A"gA"1 X"~ Hence we have

)\f _ f)\Xn _ Z}\—H—lg)\i—an(i—l) _ Z}\—ig)\ani
i=1 i=1
We take k = the center Z(K) of K. Then k satisfies the desired property, because
of X € Z(K). |
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6. APPENDIX

In this section, we recall some properties of homological algebra without proofs.
The reader see e.g. [Ro] for details.

Definition 6.1 (Category). We define a category C by the following data:
1. A class ObC of elements called objects of C.
2. For a ordered pair (X,Y) of objects a set Home (X, Y") of morphisms is given
such that Home (X, Y)NHome (X', Y) = ¢ for (X,Y) # (X',Y’) (an element
f of Home(X,Y) is called a morphism, and denote by f: X —Y).
3. For each triple (X,Y, Z) of objects of C a map
0(X,Y,Z) : Home(X,Y) x Home (Y, Z) — Home (X, Z)

(0 is called the composition map) is given.
4. The composition map 6 is associative.
5. For each object X of C, there is a morphism 1x : X — X such that for any
g:Y —=X h:X — Z we have 1xg=g,hlx = h.
Definition 6.2 (Complex). A diagram X" :... — X! AT x4y,
is called a (cochain) complex if d+1d* = 0 for all 7, that is, Imd*~! C Kerd' for all
i. A complex X is called ezact if Imd*~' = Kerd’ for all . Sometimes, we call an
exact sequence for an exact complex. For a complex X*, H"(X*) = Kerd"/Im d"
is called the n-th cohomology.

Lemma 6.3. Let O -V — V) — ... = V,, — O be an exact sequence of k-vector
spaces. Then we have

dimg Vo = 27, (—1)* dimy, V;.

Definition 6.4. For f : X — Y in Mod A, Hom,4(X,Y) = the set of left A-
linear maps from X to Y. For M € Mod A, we have the following additive group
homomorphisms

Hom 4 (M, X) 224D, yom (M, Y)(g — fog)

Hom 4 (Y, M) Homa(M,f), Hom 4 (X, M)(h— ho f).
Definition 6.5 (Projective, Injective Module). A left A-module M is called A-
projective if for any surjective A-linear map X — Y we have a surjective additive
group homomorphism Hom 4 (M, X) Homa(M.5), Hom 4 (M,Y). Similarly, a left A-
module M is called A-injective if for any injective A-linear map X — Y we have a

surjective additive group homomorphism Hom 4 (Y, M) JHomah D), g om A(X, M).

Proposition 6.6. A left A-module A is A-projective. In the case of A being a
finite dimensional k-algebra, D A is a injective left A-module.

Proposition 6.7. For a left A-module M, the following hold.
1. M is A-projective if and only if any surjective A-linear map f : X — M splits
(i.e. there exists g: M — X such that gf = 1).
2. M is A-injective if and only if any injective A-linear map f : M — 'Y splits
(i.e. there exists g: Y — M such that fg = 1p).
Proposition 6.8. For a left A-module M, the following hold.
1. There exists a set I and f : AT — M such that f is surjective.
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2. There exists a injective A-module E and g : M — E such that g is injective.

Definition 6.9 (Projective, Injective Resolution). For a left A-module M, accord-
ing to Proposition 6.8, we have a surjective A-linear map ¢g : Py — M with Py
being A-projective. For Ker ¢y, we have a surjective A-linear map ¢; : P; — Kereg
with P; being A-projective. Therefore we have an exact complex

P, —-... P —>PF—>M-—O0,

with P, being A-projective The complex P, : ... - P, — ... —» P, — Py is called
projective resolution of M.
Similarly, we have an exact complex

O—-M—=I°=>T"—> ... =I"— ..

*

with I’ being A-injective The complex I* : I — I' — ... — I™ — ... is called
injective resolution of M.
When we have a projective resolution

O—-P,—...>PL—>F—>M-—O0O,

we say that the projective dimension of M is at most n, denote by pdim s M < n.
Similarly, when we have an injective resolution

O—-M-—-I">T"— ... -1 0,

we say that the injective dimension of M is at most n, denote by idim 4 M < n.
The left global dimension lgldim A of A is the supremum of pdim M of left A-
modules M.

Theorem 6.10 (Higher Extension Groups). The following hold.

1. Let ... - P, — ... - P — Py — X — O be a projective resolution of a left
A-module X. Then for any Y € Mod A and any n > 0, H* Homy (P,,Y) is
determined independent of choice of projective resolutions.

2. LetO—=Y - I° 5T — ... = I" — ... be an injective resolution of a left
A-module Y. Then for any M € Mod A and any n > 0, H" Homu (X, I") is
determined independent of choice of injective resolutions.

3. For X,Y € Mod A, we have H" Homy (Px.,Y) = H" Homy (X, I;) forn >0,
where Px, (resp., Iy, ) is a projective (resp., an injective) resolution of X
(resp., Y).

The additive group H" Homa (Px.,Y") = H" Hom4 (X, I;,) is called the n-th Exten-
sion group Ext} (X,Y).

Proposition 6.11. The following hold.
1. If P is A-projective, then Exty (P,Y) =0 forn > 1.
2. If I is A-injective, then Ext’y (X,I) =0 forn > 1.
3. For an exact sequence O — X —Y — Z — O in Mod A, we have long exact
sequences

O —Homy(M,X) — Homu(M,Y) -Homy(M,Z) —
Exth(M,X) -  Exth(M,X) —Exth (M, X) —
Ext}(M,X) — ...,
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and
O —-Homu(Z,M) — Homu(Y, M) —Homu(X,M) —
Ext (Z,M) — Ext! (Y, M) — Ext} (X, M) —
Ext}(Z,M) — ... .
Lemma 6.12 (Nakayama’s Lemma). Let A be a ring with unity, J the Jacobson

radical of A, and M a finitely generated left A-module. For a left A-submodule N
of M, if JM + N = M, then N = M.

Definition 6.13 (Minimal Projective resolution). Let M be a finitely generated
left A-module. A projective resolution of M

=P p N MO

is called a minimal projective resolution provided that Imd; C JP;_ for all i > 1.
This resolution does not exists in general. In the case of A being left artinian, a
minimal projective resolution exists for any finitely generated left A-module.

Definition 6.14 (Indecomposable Module). A left A-module M is called indecom-
posable provided that if M = X @Y, then X or Y = O.

Definition 6.15. Let A and B be k-algebras. The tensor product A ®; B is the
k-algebra defined by

(a®b)(a @b)=ad @ bb
lagp =14 ®1p.

Then we have
(1a®b)(a®1p)=a®b
=(a®1p)(1a ®D).

Definition 6.16 (The Skew Field of Formal Laurant Polynomials). For a skew
field L, let
L{X}={22*, a;X'In € Z,a; € L}.
We define the multiplication of 32, a; X", %%, b; X7 € L{X} by
(272,,a: X)) (352,b;X7) = 572 (B j=raiby) X ¥,
and define
deg,,;, (22, a; X)) =m
if a,,, # 0. Then we have
degin (f9) = degpin (f) + degpin(9)
for non-zero polynomials f,g € L{X}. It is easy to see that L{X} is a skew field.
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