REPRESENTATIONS AND QUIVERS FOR RING THEORISTS

JUN-ICHI MIYACHI

Contents

1. Modules and Representations 1
2. Quivers and Path Algebras 5
3. Quivers with Relations 9
4. Base Extensions and Representations 13
5. Examples related to Tachikawa's Conjecture 15
5.1. The Case of Algebras 15
5.2. The Case of Rings 18
6. Appendix 20
References 23

1. Modules and Representations

Throughout this note, k is a field, and we deal with associative k-algebras. A k-algebra A is a k-vector space with a k-bilinear map $\mu: A \times A \rightarrow A$ satisfying

$$
\begin{align*}
& \left\{\begin{aligned}
& 1_{A} \in A \\
& \mu\left(1_{A}, a\right)=a\left({ }^{\forall} a \in A\right) \\
& \mu\left(a, 1_{A}\right)=a\left({ }^{\forall} a \in A\right) \\
& \mu \circ(\mu \times \mathbf{1})=\mu \circ(\mathbf{1} \times \mu)
\end{aligned}\right. \tag{1.1}\\
& \begin{aligned}
A \times A \times A \xrightarrow{\mu \times \mathbf{1}} A \times A
\end{aligned} \\
& \begin{array}{l}
\mathbf{1} \times \mu \downarrow \\
A \times A \\
\hline
\end{array} \\
& \begin{array}{l}
\mu
\end{array} \\
& \hline
\end{align*}
$$

In this note, for a k-algebra A, we fix a complete set $\left\{e_{i} \mid 1 \leq i \leq n\right\}$ of orthogonal primitive idempotents of A. Then we have

$$
A=\bigoplus_{1 \leq i, j \leq n} e_{i} A e_{j}
$$

as a k-vector space and a family of k-bilinear maps

$$
\mu_{i j k}: e_{i} A e_{j} \times e_{j} A e_{k} \rightarrow e_{i} A e_{k}
$$

Date: December 2000.
This is a seminar note of which I gave a lecture at Yamaguchi University in December 2000.
such that

$$
\left.\begin{array}{c}
\left.e_{i} \in e_{i} A e_{i}{ }^{\forall} i\right) \tag{1.2}\\
\mu_{i i j}\left(e_{i}, a_{i j}\right)=a_{i j}\left({ }^{\forall} a_{i j} \in e_{i} A e_{j}\right) \\
\mu_{i j j}\left(a_{i j}, e_{j}\right)=a_{i j}\left({ }^{\forall} a_{i j} \in e_{i} A e_{j}\right) \\
\mu_{i k l} \circ\left(\mu_{i j k} \times \mathbf{1}\right)=\mu_{i j l} \circ\left(\mathbf{1} \times \mu_{j k l}\right)
\end{array}\right\} \begin{aligned}
& e_{i} A e_{j} \times e_{j} A e_{k} \times e_{k} A e_{l} \xrightarrow{\mu_{i j k} \times \mathbf{1}} e_{i} A e_{k} \times e_{k} A e_{l} \\
& \mathbf{1 \times \mu _ { j k l }} \downarrow \\
& e_{i} A e_{j} \times e_{j} A e_{l} \quad \xrightarrow{\mu_{i k l}}
\end{aligned}
$$

Conversely, a system $\left(e_{i} A e_{j}(1 \leq i, j \leq n) ; \mu_{i j k}(1 \leq i, j, k \leq n)\right)$ of k-vector spaces satisfying the equation 1.2 defines a k-algebra $A=\bigoplus_{1 \leq i, j \leq n} e_{i} A e_{j}$ (in this case we define the other multiplications to be 0).

A (left) A-module M is a k-vector space with a k-bilinear map $\phi^{M}: A \times M \rightarrow M$ satisfying

$$
\begin{gather*}
\left\{\begin{array}{r}
\phi^{M}\left(1_{A}, m\right)=m\left({ }^{\forall} m \in M\right) \\
\phi^{M} \circ\left(\mathbf{1} \times \phi^{M}\right)=\phi^{M} \circ(\mu \times \mathbf{1}) \\
A \times A \times M \\
\xrightarrow{\mu \times \mathbf{1}} A \times M \\
\begin{array}{ll}
\times \phi^{M} \\
& A \times M
\end{array} \\
A \times M
\end{array} \begin{array}{l}
\phi^{M} \\
\phi^{M}
\end{array}\right. \tag{1.3}
\end{gather*}
$$

As an equivalent notion, a representation M of A is a k-vector space with a k-algebra map $\psi: A \rightarrow \operatorname{End}_{k}(M)$, where $\operatorname{End}_{k}(M)$ is the k-vector space of k-linear endomaps of M.

For a complete set $\left\{e_{i} \mid 1 \leq i \leq n\right\}$ of orthogonal primitive idempotents of A, we have

$$
M=\bigoplus_{1 \leq i \leq n} e_{i} M
$$

as a k-vector space and a family of k-bilinear maps

$$
\phi_{j i}^{M}: e_{j} A e_{i} \times e_{i} M \rightarrow e_{j} M
$$

such that

$$
\left.\left.\begin{array}{c}
\left\{\begin{aligned}
\phi_{i i}^{M}\left(e_{i}, m_{i}\right) & =m_{i}\left({ }^{\forall} m_{i} \in e_{i} M\right) \\
\phi_{k j}^{M} \circ\left(\mathbf{1} \times \phi_{j i}^{M}\right) & =\phi_{k i}^{M} \circ\left(\mu_{k j i} \times \mathbf{1}\right)
\end{aligned}\right. \tag{1.4}\\
e_{k} A e_{j} \times e_{j} A e_{i} \times e_{i} M
\end{array} \begin{array}{l}
\mu_{k j i} \times \mathbf{1} \\
\mathbf{1} \times \phi_{j i}^{M}
\end{array} e_{k} A e_{i} \times e_{i} M\right\} \begin{array}{l}
\phi_{k i}^{M}
\end{array}\right\}
$$

As an equivalent notion, a family $\left(e_{i} M\right)_{1 \leq i \leq n}$ of k-vector spaces with k-linear maps $\psi_{i j}^{M}: e_{i} A e_{j} \rightarrow \operatorname{Hom}_{k}\left(e_{j} M, e_{i} M\right)$ such that

$$
\left\{\begin{array}{c}
\psi_{i i}^{M}\left(e_{i}\right)=\mathbf{1}_{e_{i} M} \tag{1.5}\\
\psi_{i k}^{M}\left(a_{i j} b_{j k}\right)=\psi_{i j}^{M}\left(a_{i j}\right) \circ \psi_{j k}^{M}\left(b_{j k}\right) \\
\left({ }^{\forall} a_{i j} \in e_{i} A e_{j},{ }^{\forall} b_{j k} \in e_{j} A e_{k}\right) \\
e_{k} M \\
\psi_{j k}^{M}\left(b_{j k}\right) \\
e_{j} M \underset{\psi_{i j}^{M}\left(a_{i j}\right)}{\psi_{i k}^{M}\left(a_{i j} b_{j k}\right)} e_{i} M
\end{array}\right.
$$

where $\operatorname{Hom}_{k}\left(e_{j} M, e_{i} M\right)$ is the k-vector space of k-linear maps from $e_{j} M$ to $e_{i} M$.
Example 1.6. For a left A-module $A e_{r}$, a family $\left(e_{i} A e_{r}\right)_{1 \leq i \leq n}$ with k-linear maps $\psi_{i j}^{A e_{r}}: e_{i} A e_{j} \rightarrow \operatorname{Hom}_{k}\left(e_{j} A e_{r}, e_{i} A e_{r}\right)$ defined by $\psi_{i j}^{A e_{r}}\left(a_{i j}\right)=\mu_{i j r}\left(a_{i j},-\right)$.

$$
e_{j} A e_{r} \xrightarrow{\mu_{i j r}\left(a_{i j},-\right)} e_{i} A e_{r} \quad\left(a_{i j} \in e_{i} A e_{j}\right)
$$

For representations M, N, an A-homomorphism $f: M \rightarrow N$ is a k-linear map satisfying

$$
\begin{gather*}
f \circ \psi^{M}(a)=\phi^{N}(a) \circ f\left({ }^{\forall} a \in A\right) \tag{1.7}\\
M \xrightarrow{\psi^{M}(a)} M \\
f \downarrow \\
N \xrightarrow[\psi^{N}(a)]{ }
\end{gather*}
$$

Then we have a family $\left(f_{i}: e_{i} M \rightarrow e_{i} N\right)_{1 \leq i \leq n}$ of k-linear maps satisfying

$$
\begin{gather*}
f_{i} \circ \psi_{i j}^{M}\left(a_{i j}\right)=\phi_{i j}^{N}\left(a_{i j}\right) \circ f_{j}\left({ }^{\forall} a_{i j} \in e_{i} A e_{j}\right) \tag{1.8}\\
e_{j} M \xrightarrow{\psi_{i j}^{M}\left(a_{i j}\right)} e_{i} M \\
f_{j} \downarrow \\
e_{j} N \xrightarrow[\phi_{i j}^{N}\left(a_{i j}\right)]{ } e_{i} N
\end{gather*}
$$

Conversely, it is easy to see that a system $\left(e_{i} M(1 \leq i \leq n) ; \psi_{i j}^{M}(1 \leq i, j \leq n)\right)$ of k-vector spaces defines a left A-module $M=\bigoplus_{1 \leq i \leq n} e_{i} M$ (in this case we define the other actions to be 0), and that a family $\left(f_{i}\right)_{1 \leq i \leq n}$ of k-linear maps defines an A-homomorphism from M to N.

Example 1.9. For idempotents e_{r}, e_{s} of A, an A-homomorphism $\mu\left(-, b_{s r}\right): A e_{s} \rightarrow$ $A e_{r}$ is obtained by a family of k-linear maps $\mu_{i s r}\left(-, b_{s r}\right): e_{i} A e_{s} \rightarrow e_{i} A e_{r}(1 \leq i \leq$
$n)$.

$$
\begin{aligned}
& e_{j} A e_{s} \xrightarrow{\mu_{i j s}\left(a_{i j},-\right)} e_{i} A e_{s} \\
& \mu_{j s r}\left(-, b_{s r}\right) \downarrow \downarrow \mu_{i s r}\left(-, b_{s r}\right) \\
& e_{j} A e_{r} \xrightarrow{\mu_{i j r}\left(a_{i j},-\right)} e_{i} A e_{r}
\end{aligned}
$$

Theorem 1.10. Let $\operatorname{Rep} A$ be the category consisting of $M=(M(i)(1 \leq i \leq$ $\left.n) ; \psi_{i j}^{M}(1 \leq i, j \leq n)\right)$ satisfying

$$
\begin{aligned}
\psi_{i i}^{M}\left(e_{i}\right) & =\mathbf{1}_{M(i)} \\
\psi_{i k}^{M}\left(a_{i j} b_{j k}\right) & =\psi_{i j}^{M}\left(a_{i j}\right) \circ \psi_{j k}^{M}\left(b_{j k}\right) \\
& \left({ }^{\forall} a_{i j} \in e_{i} A e_{j},{ }^{\forall} b_{j k} \in e_{j} A e_{k}\right)
\end{aligned}
$$

$$
\underset{M(j) \underset{\psi_{i j}^{M}\left(a_{i j}\right)}{M M} e_{i} M(i)}{\left.\psi_{j k}^{M}\right)}
$$

as objects, and of $\left(f_{i}: M(i) \rightarrow N(i)\right)_{1 \leq i \leq n}$ satisfying

$$
\begin{gathered}
f_{i} \circ \psi_{i j}^{M}\left(a_{i j}\right)=\phi_{i j}^{N}\left(a_{i j}\right) \circ f_{j} \\
M(j) \xrightarrow{\psi_{i j}^{M}\left(a_{i j}\right)} M(i) \\
f_{j} \downarrow \\
N(j) \xrightarrow[\phi_{i j}^{N}\left(a_{i j}\right)]{ }
\end{gathered}
$$

for M, N as morphisms. Then Rep A is equivalent to the category $\operatorname{Mod} A$ of left A-modules.

For A-modules M, N, we denote by $\operatorname{Hom}_{A}(M, N)$ the set of A-homomorphisms from M to N.

Lemma 1.11. For a left A-module M, we have

$$
\operatorname{Hom}_{A}\left(A e_{i}, M\right) \cong e_{i} M
$$

as $e_{i} A e_{i}$-modules.
Proof. Let $\theta: \operatorname{Hom}_{A}\left(A e_{i}, M\right) \rightarrow e_{i} M$ be the map defined by $(f)=f\left(e_{i}\right)$ for $f \in$ $\operatorname{Hom}_{A}\left(A e_{i}, M\right)$, and $\eta: e_{i} M \rightarrow \operatorname{Hom}_{A}\left(A e_{i}, M\right)$ the map defined by $\eta\left(m_{i}\right)\left(a e_{i}\right)=$ $a m_{i}$ for $m_{i} \in e_{i} M$ and $a e_{i} \in A e_{i}$. Then θ, η are A-homomorphisms and $\theta \eta=1$, $\eta \theta=1$.

Corollary 1.12. Let J be the Jacobson radical of A. Assume that A is a basic artinian k-algebra, that is, $A e_{i} \neq A e_{j}$ for $i \neq j$. Then we have

$$
\operatorname{Hom}_{A}\left(A e_{i}, A e_{j} / J e_{j}\right) \cong\left\{\begin{array}{l}
e_{i} A e_{i} / e_{i} J e_{i} \text { if } i=j \\
O \text { if } i \neq j
\end{array}\right.
$$

Proposition 1.13. Assume that A is a finite dimensional k-algebra satisfying A / J $\cong k \times \cdots \times k$ (i.e., $e_{i} A e_{i} / e_{i} J e_{i} \cong k$ for any $1 \leq i \leq n$). For a left A-module M, we have

$$
\begin{aligned}
\operatorname{dim}_{k} e_{i} M= & \text { the appearance number of simple type } A e_{i} / J e_{i} \\
& \text { in a composition series of } M .
\end{aligned}
$$

Proof. Let

$$
O=M_{-1} \subset M_{0} \subset M_{1} \subset \cdots \subset M_{r}=M
$$

be a composition series. Then we have an exact sequence

$$
O \rightarrow \operatorname{Hom}_{A}\left(A e_{i}, M_{t-1}\right) \rightarrow \operatorname{Hom}_{A}\left(A e_{i}, M_{t}\right) \rightarrow \operatorname{Hom}_{A}\left(A e_{i}, M_{t} / M_{t-1}\right) \rightarrow O
$$

for $1 \leq t \leq r$. Therefore we have

$$
\operatorname{dim}_{k} e_{i} M=\sum_{0 \leq t \leq r} \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(A e_{i}, M_{t} / M_{t-1}\right)
$$

By Corollary 1.12, we get the statement.
Example 1.14. In the case of $A / J \cong k \times \cdots \times k$, we may assume that $A=$ $\left(\oplus_{i=1}^{n} k e_{i}\right) \oplus J$. A simple left A-module $A e_{r} / J e_{r}$ is described by $\left(M(i) ; \psi_{i j}^{M}\right) \in \operatorname{Rep} A$ as follows.

$$
\begin{gathered}
M(i)=\left\{\begin{array}{l}
k \text { if } i=r \\
O \text { if } i \neq r
\end{array}\right. \\
\psi_{i j}^{M}\left(a_{i j}\right)=\left\{\begin{array}{l}
\lambda \text { if }(i, j)=(r, r), a_{i j}=\lambda e_{r} \\
0 \text { if }(i, j)=(r, r), a_{i j} \in e_{r} J e_{r} \\
0 \text { otherwise }
\end{array}\right.
\end{gathered}
$$

2. Quivers and Path Algebras

Definition 2.1. A quiver $\vec{Q}=\left(Q_{0}, Q_{1}\right)$ is an oriented graph, where Q_{0} is a set of vertices and Q_{1} is a set of arrows between vertices. We use $h: Q_{1} \rightarrow Q_{0}$, $t: Q_{1} \rightarrow Q_{0}$ the maps defined by $h(\alpha)=j, t(\alpha)=i$ when $\alpha: i \rightarrow j$ is arrow from the vertex i to the vertex j. A quiver $\vec{Q}=\left(Q_{0}, Q_{1}\right)$ is called a finite quiver if $\# Q_{0}, \# Q_{1}<\infty$.

A path $w=\left(i\left|\alpha_{r}, \ldots, \alpha_{1}\right| j\right)$ from the vertex j to the vertex i in the quiver \vec{Q} is a sequence of ordered arrows $\alpha_{1}, \ldots, \alpha_{r}$ such that $j=t\left(\alpha_{1}\right), h\left(\alpha_{i}\right)=t\left(\alpha_{i+1}\right)(1 \leq$ $i \leq r-1$), $h\left(\alpha_{r}\right)=i$. In this case, j (resp., i) is called the tail $t(w)$ (resp., the head $h(w))$ of w, and r is called the length of a path w. For every vertex i, the path $e_{i}=(i| | i)$ of length 0 is called the empty path. A non-empty path w is called an oriented cycle if $h(w)=t(w)$.

Definition 2.2. Let $Q_{0}=\{1, \ldots, n\}$ and Q_{1} a set. For any $i, j \in Q_{0}, e_{i}|\vec{Q}| e_{j}$ is the set of paths w in \vec{Q} with $t(w)=j, h(w)=i$. For any $i, j, k \in Q_{0}$ with $e_{i}|\vec{Q}| e_{j} \neq \phi$, $e_{j}|\vec{Q}| e_{k} \neq \phi$, we define a composition map $\mu_{i j k}: e_{i}|\vec{Q}| e_{j} \times e_{j}|\vec{Q}| e_{k} \rightarrow e_{i}|\vec{Q}| e_{k}$ by setting

$$
\mu_{i j k}\left(\left(i\left|\alpha_{s}, \ldots, \alpha_{r+1}\right| j\right),\left(j\left|\alpha_{r}, \ldots, \alpha_{1}\right| k\right)\right)=\left(i\left|\alpha_{s}, \ldots, \alpha_{1}\right| k\right)
$$

Then for any $i, j, k, l \in Q_{0}$ with $e_{i}|\vec{Q}| e_{j} \neq \phi, e_{j}|\vec{Q}| e_{k} \neq \phi, e_{k}|\vec{Q}| e_{l} \neq \phi$, we have

We denote by $e_{i} k \vec{Q} e_{j}$ the k-vector space with the paths from the vertex j to i as a basis if $e_{i}|\vec{Q}| e_{j} \neq \phi$, and $e_{i} k \vec{Q} e_{j}=O$ if $e_{i}|\vec{Q}| e_{j}=\phi$. For any $i, j, k \in Q_{0}$, we define a k-bilinear map $\mu_{i j k}: e_{i} k \vec{Q} e_{j} \times e_{j} k \vec{Q} e_{k} \rightarrow e_{i} k \vec{Q} e_{k}$ by setting

$$
\mu_{i j k}\left(\lambda_{v} v, \lambda_{w} w\right)=\lambda_{v} \lambda_{w} v w
$$

with $\lambda_{v}, \lambda_{w} \in k$. For any $i, j, k, l \in Q_{0}$, we have

Then, by $1.2, k \vec{Q}=\bigoplus_{1 \leq i, j \leq n} e_{i} k \vec{Q} e_{j}$ becomes an associative k-algebra. This algebra is called the path algebra of \vec{Q} over k.

We often simply write $\alpha_{r}, \ldots, \alpha_{1}$ for $\left(i\left|\alpha_{r}, \ldots, \alpha_{1}\right| j\right)$.
Proposition 2.3. For a finite quiver $\vec{Q}, k \vec{Q}$ is a finite dimensional k-algebra if and only if \vec{Q} has no oriented cycle.

Example 2.4. For a quiver

$$
\vec{Q}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3
$$

we have

$$
\begin{array}{lll}
e_{1} k \vec{Q} e_{1}=<e_{1}>_{k} & e_{2} k \vec{Q} e_{1}=<\alpha>_{k} & e_{3} k \vec{Q} e_{1}=<\beta \alpha>_{k} \\
e_{1} k \vec{Q} e_{2}=O & e_{2} k \vec{Q} e_{2}=<e_{2}>_{k} & e_{3} k \vec{Q} e_{2}=<\beta>_{k} \\
e_{1} k \vec{Q} e_{3}=O & e_{2} k \vec{Q} e_{3}=O & e_{3} k \vec{Q} e_{3}=<e_{3}>_{k}
\end{array}
$$

Then we have

$$
k \vec{Q} \cong\left[\begin{array}{lll}
k & 0 & 0 \\
k & k & 0 \\
k & k & k
\end{array}\right]
$$

Example 2.5. For a quiver

$$
\vec{Q}: 1 \xrightarrow[\beta]{\xrightarrow{\alpha}} 2 \xrightarrow{\gamma} 3
$$

we have

$$
\begin{array}{lll}
e_{1} k \vec{Q} e_{1}=<e_{1}>_{k} & e_{2} k \vec{Q} e_{1}=<\alpha, \beta>_{k} & e_{3} k \vec{Q} e_{1}=<\gamma \alpha, \gamma \beta>_{k} \\
e_{1} k \vec{Q} e_{2}=O & e_{2} k \vec{Q} e_{2}=<e_{2}>_{k} & e_{3} k \vec{Q} e_{2}=<\gamma>_{k} \\
e_{1} k \vec{Q} e_{3}=O & e_{2} k \vec{Q} e_{3}=O & e_{3} k \vec{Q} e_{3}=<e_{3}>_{k}
\end{array}
$$

Then we have

$$
k \vec{Q} \cong\left[\begin{array}{cc}
k & O \\
{ }_{A} M_{k} & A
\end{array}\right], \quad A=\left[\begin{array}{ll}
k & 0 \\
k & k
\end{array}\right], \quad{ }_{A} M=\left[\begin{array}{l}
k \\
k
\end{array}\right] \oplus\left[\begin{array}{l}
k \\
k
\end{array}\right]
$$

Example 2.6. For a quiver

$$
\vec{Q}: 1 \xrightarrow{\alpha} 2 \bigcirc \beta
$$

we have

$$
\begin{array}{ll}
e_{1} k \vec{Q} e_{1}=<e_{1}>_{k} & e_{2} k \vec{Q} e_{1}=<\alpha, \beta^{n} \alpha: n \in \mathbb{N}>_{k} \\
e_{1} k \vec{Q} e_{2}=O & e_{2} k \vec{Q} e_{2}=<e_{2}, \beta^{n}: n \in \mathbb{N}>_{k}
\end{array}
$$

Then we have

$$
k \vec{Q} \cong\left[\begin{array}{cc}
k & 0 \\
k[x] & k[x]
\end{array}\right]
$$

Lemma 2.7. Let A be a ring, $O \rightarrow X \rightarrow Y \rightarrow Z \rightarrow O$ an exact sequence of left A-modules. Then we have

$$
\operatorname{pdim}_{A} Y \leq \max \left\{\operatorname{pdim}_{A} X, \operatorname{pdim}_{A} Z\right\}
$$

Proposition 2.8. For a finite dimensional k-algebra A, the following are equivalent.

1. $\operatorname{lgl} \operatorname{dim} A \leq n$.
2. $\operatorname{pdim}_{A} A / J \leq n$.

In particular, the following are equivalent.

1. A is hereditary.
2. J is projective.
3. $\lg \operatorname{ldim} A \leq 1$.
4. $\operatorname{pdim}_{A} A / J \leq 1$.

Proposition 2.9. Let \vec{Q} be a finite quiver without oriented cycles. Then $k \vec{Q}$ is hereditary, and $k \vec{Q} / J_{k \vec{Q}} \cong k \times \cdots \times k$, where $J_{k \vec{Q}}$ is the Jacobson radical of $k \vec{Q}$.
Proof. Let $Q_{0}=1, \ldots, n$, then $1=e_{1}+\ldots+e_{n}$. Let J_{+}be the vector space spanned by paths of length ≥ 1, then there exists $t \geq 0$ such that $J_{+}^{t+1}=0$. Therefore $J_{+} \subset J_{k \vec{Q}}$. It is easy to see that $k \vec{Q} / J_{+} \cong k e_{1} \times \cdots \times k e_{n}$ as rings. Thus we have $J_{+}=J_{k \vec{Q}}$. For $i \in Q_{0}$, since \vec{Q} is finite, we may assume that the set of arrows α with $t(\alpha)=i$ is $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. Then we have

$$
J_{+} e_{i}=\oplus_{i=1}^{r} k \vec{Q} \alpha_{i}
$$

Since $\mu\left(-, \alpha_{j}\right): k \vec{Q} e_{h\left(\alpha_{i}\right)} \rightarrow k \vec{Q}$ is an isomorphism, $J_{k \vec{Q}} e_{i}$ is a projective left $k \vec{Q}$ module, and hence $J_{k \vec{Q}}$ is a projective left $k \vec{Q}$-module.

Definition 2.10. Given a quiver $\vec{Q}=\left(Q_{0}, Q_{1}\right)$, a representation $M=\left(M(i) ; \psi^{M}\right)$ of \vec{Q} over a field k is a family $(M(i))_{i \in Q_{0}}$ of k-vector spaces together with a family $\left(\psi^{(\alpha)}: M(j) \rightarrow M(i)\right)_{j \xrightarrow{\alpha}}^{{ }_{i \in Q_{1}}}$ of k-linear maps. A representation $M=$ ($\left.M(i) ; \psi^{M}\right)$ is called a finite dimensional representation if $M(i)$ is a finite dimensional k-vector space for every $i \in Q_{0}$.

For $\left(M(i) ; \psi^{M}\right),\left(N(i) ; \psi^{N}\right)$, a morphism $f:\left(M(i) ; \psi^{M}\right) \rightarrow\left(N(i) ; \psi^{N}\right)$ is a family $\left(f_{i}: M(i) \rightarrow N(i)\right)_{i \in Q_{0}}$ of k-linear maps satisfying that we have a commutative diagram

for any $j \xrightarrow{\alpha} i \in Q_{1}$.
We denote by $\operatorname{Rep}_{k} \vec{Q}$ (resp., $\operatorname{rep}_{k} \vec{Q}$) the category of representations (resp., finite dimensional representations) of \vec{Q} over k.

Theorem 2.11. For a finite quiver $\vec{Q}, \operatorname{Rep}_{k} \vec{Q}$ is equivalent to $\operatorname{Rep} k \vec{Q}$, and hence it is equivalent to $\operatorname{Mod} k \vec{Q}$. Moreover, $\operatorname{rep}_{k} \vec{Q}$ is equivalent to the category $\bmod _{\mathrm{fd}} k \vec{Q}$ of finite dimensional left $k \vec{Q}$-modules.

Sketch of The Proof. For any idempotents e_{i}, e_{j} of $k \vec{Q}$, all elements of $e_{i} k \vec{Q} e_{j}$ are k-linear combinations of paths from j to i. Then it is easy.

Proposition 2.12. For any collection $\left\{\left(M_{\lambda} ; \psi^{M_{\lambda}}\right)\right\}_{\lambda \in \Lambda}$ of representations of \vec{Q} over k, $\left(\bigoplus_{\lambda \in \Lambda} M_{\lambda} ; \bigoplus_{\lambda \in \Lambda} \psi^{M_{\lambda}}\right)$ (resp., $\left(\prod_{\lambda \in \Lambda} M_{\lambda} ; \prod_{\lambda \in \Lambda} \psi^{M_{\lambda}}\right)$) is the direct sum (resp., the direct product) of $\left\{\left(M_{\lambda} ; \psi^{M_{\lambda}}\right)\right\}_{\lambda \in \Lambda}$.
Example 2.13. For a quiver

$$
\vec{Q}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3
$$

$k \vec{Q}=<e_{1}, e_{2}, e_{3}, \alpha, \beta, \beta \alpha>_{k}$. A representation M of \vec{Q} over k is the following

$$
M(1) \xrightarrow{\psi^{M}(\alpha)} M(2) \xrightarrow{\psi^{M}(\beta)} M(3)
$$

Then we define $M=M(1) \oplus M(2) \oplus M(3)$ to be a left A-module as follows. For $m=\left(m_{1}, m_{2}, m_{3}\right) \in M$ and $a=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\lambda_{3} e_{3}+\lambda_{\alpha} \alpha+\lambda_{\beta} \beta+\lambda_{\beta \alpha} \beta \alpha \in k \vec{Q}$, we define

$$
a m=\left(\lambda_{1} m_{1}, \lambda_{2} m_{2}+\lambda_{\alpha} \psi^{M}(\alpha)\left(m_{1}\right), \lambda_{3} m_{3}+\lambda_{\beta} \psi^{M}(\beta)\left(m_{2}\right)+\lambda_{\beta \alpha} \psi^{M}(\beta) \psi^{M}(\alpha)\left(m_{1}\right)\right)
$$

By the standard technique of linear algebra, all indecomposable representations are up to isomorphisms the following

$$
\begin{array}{lll}
M_{1}: O \rightarrow O \rightarrow k & M_{2}: O \rightarrow k \rightarrow k & M_{3}: \\
M_{4}: O \rightarrow k \rightarrow k \rightarrow k \\
& O \rightarrow \theta \rightarrow O & M_{5}: \\
\hline
\end{array} \quad k \rightarrow k \rightarrow O \quad M_{6}: k \rightarrow O \rightarrow O
$$

It is easy to see that we have composition series of M_{3} and M_{5}

Then $M_{1} \cong k \vec{Q} e_{3} / J e_{3}, M_{2} / M_{1} \cong k \vec{Q} e_{2} / J e_{2}, M_{3} / M_{2} \cong k \vec{Q} e_{1} / J e_{1}$, and $M_{4} \cong$ $k \vec{Q} e_{2} / J e_{2}, M_{5} / M_{4} \cong k \vec{Q} e_{1} / J e_{1}$, where J is the Jacobson radical of $k \vec{Q}$. Moreover, $k \vec{Q} e_{1} \cong M_{3}, J e_{3} \cong J M_{3} \cong k \vec{Q} e_{2} \cong M_{2}$ and $J e_{2} \cong J M_{2} \cong k \vec{Q} e_{3} \cong M_{1}$.

We often write modules by using composition series

3. Quivers with Relations

Definition 3.1. A relation σ on a quiver \vec{Q} over a field k is a k-linear combinations $\sigma=\sum_{t=1}^{r} \lambda_{t} w_{t}$, where w are paths from j to $i, \lambda_{t} \in k$. A pair (\vec{Q}, ρ) is called a quiver with relations over k if $\rho=\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ where σ_{i} is a relation for every i. We denote $k(\vec{Q}, \rho)=k \vec{Q} /<\rho>$, where $\langle\rho>$ is the two-sided ideal of $k \vec{Q}$ generated by relations of ρ. We denote by J_{+}the two-sided ideal of $k \vec{Q}$ generated by arrows.

Proposition 3.2. Let (\vec{Q}, ρ) be a finite quiver with relations over k. If there is t such that $J_{+}^{t} \subset<\rho>\subset J_{+}^{2}$, then $\bar{J}_{+}=\operatorname{rad}(k(\vec{Q}, \rho))$, where \bar{J}_{+}is the image of J_{+} in $k(\vec{Q}, \rho)$.

Proof. Let $A=k(\vec{Q}, \rho)$ and $J=\operatorname{rad}(k(\vec{Q}, \rho))$. Since $\bar{J}_{+}{ }^{t}=O$, we have $\bar{J}_{+} \subset J$. It is clearly that $A / \bar{J}_{+} \cong k \vec{Q} / J_{+}$is semi-simple. Then $\left(J+\bar{J}_{+}\right) / \bar{J}_{+}=O$, and hence $\bar{J}_{+} \subset J$.

Definition 3.3. For a quiver with relations (\vec{Q}, ρ) over $k, \operatorname{Rep}_{k}(\vec{Q}, \rho)$ (resp., $\left.\operatorname{rep}_{k}(\vec{Q}, \rho)\right)$ is the full subcategory of $\operatorname{Rep}_{k} \vec{Q}$ (resp., $\operatorname{rep}_{k} \vec{Q}$) consisting objects $M=\left(M(i) ; \psi^{M}\right)$ with $\psi^{M}(\sigma)=0$ for any relation σ of ρ. Here $\psi^{M}(w)=$ $\psi^{M}\left(\alpha_{r}\right) \ldots \psi^{M}\left(\alpha_{1}\right)$ for $w=\alpha_{r} \ldots \alpha_{1}$, and $\psi^{M}(\sigma)=\Sigma_{t} \lambda_{t} \psi^{M}\left(w_{t}\right)$ for $\sigma=\Sigma_{t} \lambda_{t} w_{t}$.

Theorem 3.4. For a finite quiver with relations (\vec{Q}, ρ) over $k, \operatorname{Rep}_{k}(\vec{Q}, \rho)$ (resp., $\left.\operatorname{rep}_{k}(\vec{Q}, \rho)\right)$ is equivalent to $\operatorname{Mod} k(\vec{Q}, \rho)\left(\right.$ resp., $\left.\bmod _{\mathrm{fd}} k(\vec{Q}, \rho)\right)$.
Sketch. According to Theorem 2.11 and the explanations before the theorem, $\psi^{M}(\sigma)=0$ means that $\sigma M=O$ when we consider $M=\bigoplus_{i \in Q_{0}} M(i)$ as a left $k \vec{Q}$-module.

Definition 3.5. For a quiver \vec{Q}, the opposite quiver \vec{Q}^{op} is the quiver with all arrows reversed. For a quiver with relations (\vec{Q}, ρ) over $k,\left(\vec{Q}^{\mathrm{op}}, \rho^{\mathrm{op}}\right)$ is similarly defined. Then $k(\vec{Q}, \rho)^{\mathrm{op}}=k\left(\vec{Q}^{\mathrm{op}}, \rho^{\mathrm{op}}\right)$.

Let $\mathrm{D}=\operatorname{Hom}_{k}(-, k)$. For a representation $M=\left(M(i) ; \psi^{M}\right) \in \operatorname{Rep}_{k}(\vec{Q}, \rho)$, $\mathrm{D} M=\left(\mathrm{D} M(i) ; \psi^{\mathrm{D} M}\right)$, where $\psi^{\mathrm{D} M}(\alpha)=\mathrm{D} \psi^{M}(\alpha)$. Then $\mathrm{D} M$ is a representation of $\left(\vec{Q}^{\mathrm{op}}, \rho^{\mathrm{op}}\right)$ over k.

Proposition 3.6. For a quiver with relations (\vec{Q}, ρ) over k, D induces a duality between $\operatorname{rep}_{k}(\vec{Q}, \rho)$ and $\operatorname{rep}_{k}\left(\vec{Q}{ }^{\mathrm{op}}, \rho^{\mathrm{op}}\right)$.

Remark 3.7. For a k-algebra A, idempotents e_{i}, e_{j} and $a_{i j} \in e_{i} A e_{j}$, we have a left A-homomorphism $\mu\left(-, a_{i j}\right): A e_{i} \rightarrow A e_{j}$. Then we have a commutative diagram in
$\operatorname{Mod} A^{\mathrm{op}}$

In $\operatorname{Rep}_{k} \vec{Q}$, we have also the same result.
Example 3.8. For a quiver

$$
\vec{Q}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3
$$

with a relation $\rho=\beta \alpha$. Then $k \vec{Q}=<e_{1}, e_{2}, e_{3}, \alpha, \beta, \beta \alpha>_{k}$ and the ideal $<\rho>=<$ $\beta \alpha>_{k}$. Therefore $k(\vec{Q}, \rho)=<\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{\alpha}, \bar{\beta}>_{k}$. Let $A=k(\vec{Q}, \rho)$, then we have

$$
\begin{array}{lll}
\bar{e}_{1} A \bar{e}_{1}=<\bar{e}_{1}>_{k} & \bar{e}_{2} A \bar{e}_{1}=<\bar{\alpha}>_{k} & \bar{e}_{3} A \bar{e}_{1}=O \\
\bar{e}_{1} A \bar{e}_{2}=O & \bar{e}_{2} A \bar{e}_{2}=<\bar{e}_{2}>_{k} & \bar{e}_{3} A \bar{e}_{2}=<\bar{\beta}>_{k} \\
\bar{e}_{1} A \bar{e}_{3}=O & \bar{e}_{2} A \bar{e}_{3}=O & \bar{e}_{3} A \bar{e}_{3}=<\bar{e}_{3}>_{k}
\end{array}
$$

Since this algebra is a factor of the path algebra in Example 2.13, all indecomposable representations are up to isomorphisms the following

$$
\begin{array}{ll}
M_{1}: O \rightarrow O \rightarrow k & M_{2}: O \rightarrow k \rightarrow k \\
M_{4}: O \rightarrow k \rightarrow O & M_{5}: \\
\hline & k \rightarrow k \rightarrow O
\end{array} \quad M_{6}: k \rightarrow O \rightarrow O
$$

The opposite quiver of with relations ($\left.\vec{Q}^{\mathrm{op}}, \rho^{\mathrm{op}}\right)$ is

$$
\vec{Q}^{\mathrm{op}}: 1 \stackrel{\alpha^{\mathrm{op}}}{\leftarrow} 2 \leftarrow^{\beta^{\text {op }}} 3
$$

with $\rho^{\mathrm{op}}=\alpha^{\mathrm{op}} \beta^{\mathrm{op}}$. Therefore we have

$$
\begin{aligned}
& A e_{3}=A e_{3} / J e_{3} \cong M_{1} \quad A e_{2} \cong \mathrm{D}\left(e_{3} A\right) \cong M_{2} \\
& A e_{2} / J e_{2} \cong M_{4} \quad A e_{1} \cong \mathrm{D}\left(e_{2} A\right) \cong M_{5} \quad \mathrm{D}\left(e_{1} A\right) \cong A e_{1} / J e_{1} \cong M_{6} \\
& M_{1}: 3 \quad M_{2}: \underset{3}{\underset{\mid \beta}{\mid \beta}} \underset{\sim}{2} M_{4}: 2 \quad M_{5}: \underset{2}{\mid \underset{2}{\mid \alpha}} \quad M_{6}: 1
\end{aligned}
$$

Since projective resolutions of $A e_{1} / J e_{1}, A e_{2} / J e_{2}, A e_{3} / J e_{3}$ are

by Proposition 2.8, $\operatorname{lgldim} k(\vec{Q}, \rho)=2$. Moreover, an injective resolution of ${ }_{A} A$ is

$$
O \longrightarrow{ }_{A} A \longrightarrow \mathrm{D}\left(e_{2} A\right) \oplus \mathrm{D}\left(e_{3} A\right)^{2} \longrightarrow \mathrm{D}\left(e_{2} A\right) \longrightarrow \mathrm{D}\left(e_{1} A\right) \longrightarrow O
$$

Since $\operatorname{pdim}_{A} \mathrm{D}\left(e_{2} A\right)=\operatorname{pdim}_{A} \mathrm{D}\left(e_{3} A\right)=0$ and $\operatorname{pdim}_{A} \mathrm{D}\left(e_{1} A\right)=2, A$ is an Auslander regular k-algebra.

Example 3.9. For a quiver

$$
\vec{Q}: 1 \underset{\beta}{\stackrel{\alpha}{\longleftrightarrow}} 2
$$

with a relation $\rho=\{\beta \alpha\}$. Then

$$
k \vec{Q}=<e_{1}, e_{2}, \alpha, \beta,(\beta \alpha)^{h},(\alpha \beta)^{l} \alpha(\beta \alpha)^{m}, \beta(\alpha \beta)^{n}: h, l, m, n \in \mathbb{N}>_{k}
$$

and the ideal

$$
<\rho>=<(\beta \alpha)^{h},(\alpha \beta)^{l+1}, \alpha(\beta \alpha)^{m}, \beta(\alpha \beta)^{n}: h, l, m, n \in \mathbb{N}>_{k}
$$

Therefore $k(\vec{Q}, \rho)=<\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \bar{\alpha}, \bar{\beta}, \bar{\alpha} \bar{\beta}>_{k}$. Let $A=k(\vec{Q}, \rho)$, then we have

$$
\begin{array}{ll}
\bar{e}_{1} A \bar{e}_{1}=<\bar{e}_{1}>_{k} & \bar{e}_{2} A \bar{e}_{1}=<\bar{\alpha}>_{k} \\
\bar{e}_{1} A \bar{e}_{2}=<\bar{\beta}>_{k} & \bar{e}_{2} A \bar{e}_{2}=<\bar{e}_{2}, \alpha \beta>_{k}
\end{array}
$$

The opposite quiver of with relations $\left(\overrightarrow{Q^{\mathrm{op}}}, \rho^{\mathrm{op}}\right)$ is

$$
\vec{Q}^{\mathrm{op}}: 1 \underset{\beta^{\mathrm{op}}}{\stackrel{\alpha^{\mathrm{op}}}{\leftrightarrows}} 2
$$

with a relation $\rho^{\mathrm{op}}=\left\{\alpha^{\mathrm{op}} \beta^{\mathrm{op}}\right\}$. Hence we have

$$
\begin{aligned}
& \mathrm{D}\left(e_{1} A\right): \underset{1}{\mid \underset{1}{\mid \beta}}: \underset{1}{\underset{\sim}{\longleftrightarrow}} k \\
& A e_{1} / J e_{1}: 1: \quad k \underset{<_{0}}{\stackrel{0}{\longleftrightarrow}} O \quad A e_{2} / J e_{2}: 2: \quad O \underset{{ }_{0}}{\stackrel{0}{\longleftrightarrow}} k
\end{aligned}
$$

Since projective resolutions of $A e_{1} / J e_{1}, A e_{2} / J e_{2}$ are

by Proposition 2.8, $\lg \operatorname{ldim} A=2$. A projective resolution of $\mathrm{D}\left(e_{1} A\right)$ is

Moreover, an injective resolution of ${ }_{A} A$ is

$$
O \longrightarrow{ }_{A} A \longrightarrow \mathrm{D}\left(e_{2} A\right)^{2} \longrightarrow \mathrm{D}\left(e_{2} A\right) \longrightarrow \mathrm{D}\left(e_{1} A\right) \longrightarrow O
$$

Since $\operatorname{pdim}_{A} \mathrm{D}\left(e_{2} A\right)=0$ and $\operatorname{pdim}_{A} \mathrm{D}\left(e_{1} A\right)=2, A$ is an Auslander regular k algebra.

Definition 3.10. Let Λ be a ring, and V a Λ-bimodule. We denote by $V^{\otimes n}=$ $\overbrace{V \otimes_{\Lambda} \cdots \otimes_{\Lambda} V}^{n \text { times }}$. Then the tensor ring $\mathrm{T}(\Lambda, V)$ is $\Lambda \oplus\left(\bigoplus_{n>1} V^{\otimes n}\right)$ as an abelian group, and its multiplication is induced by the canonical Λ - $\overline{\text { bilinear maps }}$ $V^{\otimes m} \otimes_{\Lambda} V^{\otimes n} \rightarrow V^{\otimes m+n}$ for $m, n \geq 0$.
Lemma 3.11. Let Λ be a ring, V a Λ-bimodule and A a Λ-algebra. For a Λ bimodule homomorphism $f: V \rightarrow A$, there exists a unique Λ-algebra homomorphism $\tilde{f}: \mathrm{T}(\Lambda, V) \rightarrow A$ such that $\left.\tilde{f}\right|_{V}=f$.

Sketch of The Proof. Let $\phi: \Lambda \rightarrow A$ be a ring homomorphism. A map \tilde{f} : $\mathrm{T}(\Lambda, V) \rightarrow A$ is defined by

$$
\tilde{f}\left(a_{0}+\sum_{i \geq 1} \sum_{j} v_{i 1 j} \otimes \cdots \otimes v_{i i j}\right)=\phi\left(a_{0}\right)+\sum_{i \geq 1} \sum_{j} f\left(v_{i 1 j}\right) \ldots f\left(v_{i i j}\right)
$$

for $a_{0}+\sum_{i \geq 1} \sum_{j} v_{i 1 j} \otimes \cdots \otimes v_{i i j} \in \mathrm{~T}(\Lambda, V)$. Then this satisfies the desired property.

Definition 3.12. For a k-algebra $\Lambda=\prod_{i=1}^{n} k$ and Λ-bimodule V, the quiver $\vec{Q}_{\mathrm{T}(\Lambda, V)}$ of $\mathrm{T}(\Lambda, V)$ consists of $Q_{\mathrm{T}(\Lambda, V) 0}=\{1, \ldots, n\}$, and of the number of arrows from the vertex i to j which is $\operatorname{dim}_{k} e_{j} V e_{i}$, where e_{i}, e_{j} correspond to i, j.

For a finite dimensional k-algebra A with $A / J_{A} \cong \prod_{i=1}^{n} k$, the quiver \vec{Q}_{A} is the quiver $\vec{Q}_{\mathrm{T}\left(A / J_{A}, J_{A} / J_{A}^{2}\right)}$.
Proposition 3.13. For a k-algebra $\Lambda=\prod_{i=1}^{n} k$ and Λ-bimodule V, there is a k algebra isomorphism $\phi: \mathrm{T}(\Lambda, V) \rightarrow k \vec{Q}_{\mathrm{T}(\Lambda, V)}$.
Proof. Since $k \vec{Q}=\left(\oplus_{i=1}^{n} \lambda_{i} e_{i}\right) \oplus J_{+}$, we identify the idempotents of A / J with them of $k \vec{Q}$. For $1 \leq i, j \leq n$, we take a k-basis $\left\{v_{i j k} \mid 1 \leq k \leq n_{i j}\right\}$ of $e_{i} V e_{j}$, and denote by $\alpha_{v_{i j k}}$ the arrow in $k \vec{Q}_{\mathrm{T}(\Lambda, V)}$ corresponding to $v_{i j k}$. A map $\phi: \mathrm{T}(\Lambda, V) \rightarrow A$ is defined by

$$
\phi\left(\sum_{i=1}^{n} \lambda_{i} e_{i}+\sum_{i \geq 1, j} \lambda_{i j} u_{i 1 j} \otimes \cdots \otimes u_{i i j}\right)=\sum_{i=1}^{n} \lambda_{i} e_{i}+\sum_{i \geq 1, j} \lambda_{i j} \alpha_{u_{i 1 j}} \ldots \alpha_{u_{i i j}}
$$

for $\sum_{i=1}^{n} \lambda_{i} e_{i}+\sum_{i \geq 1, j} \lambda_{i j} u_{i 1 j} \otimes \cdots \otimes u_{i i j} \in \mathrm{~T}(\Lambda, V)$, where $u_{i j k}$ are elements of the above basis. It is easy to see that $\operatorname{dim}_{k} e_{i}\left(\bigoplus_{n \geq 1} V^{\otimes n}\right) e_{j}=e_{i} k \vec{Q} e_{j}$. Hence ϕ is bijective.
Theorem 3.14. Let A be a finite dimensional k-algebra with $A / J_{A} \cong \prod_{i=1}^{n} k$. Then the following hold.

1. There is a surjective ring homomorphism $\phi: \mathrm{T}\left(A / J_{A}, J_{A} / J_{A}^{2}\right) \rightarrow A$ such that $\coprod_{i \geq \mathrm{rl}(A)}\left(J_{A} / J_{A}^{2}\right)^{i} \subset \operatorname{Ker} \phi \subset\left(J_{A} / J_{A}^{2}\right)^{2}$, where $\operatorname{rl}(A)$ is the Loewy length of A (i.e. $\mathrm{rl} A=\min \left\{t \mid J_{A}^{t+1}=0\right\}$).
2. $A \cong k(\vec{Q}, \rho)$ with $J_{A}^{r} \subset<\rho>\subset J_{A}^{2}$ for some r, where $\vec{Q}=\vec{Q}_{A}$.

Proof. 1. By the assumption, we may assume that a split injective k-algebra homomorphism $\phi_{0}: A / J \rightarrow A, A / J=\oplus_{i=1}^{n} k e_{i}$ and $A=A / J \oplus J$ with $J=J_{A}$ the Jacobson radical of A. For any e_{i}, e_{j}, we choose elements $r_{i j 1}, \ldots, r_{i j n_{i j}}$ of $e_{i} J e_{j}$ such that $\left\{\bar{r}_{i j 1}, \ldots, \bar{r}_{i j n_{i j}}\right\}$ is a k-basis of $e_{i}\left(J / J^{2}\right) e_{j}$. Let $\phi_{1}: J / J^{2} \rightarrow A$ be an A / J-bimodule homomorphism defined by $\phi_{1}\left(\bar{r}_{i j k}\right)=r_{i j k}$, then by Lemma 3.11, there exists an
A / J-algebra homomorphism $\phi: \mathrm{T}\left(A / J, J / J^{2}\right) \rightarrow A$ such that $\left.\tilde{\phi}\right|_{A / J \oplus J / J^{2}}=\phi_{0} \oplus \phi_{1}$ is injective. Therefore $\coprod_{i \geq \mathrm{rl}(A)}\left(J_{A} / J_{A}^{2}\right)^{i} \subset \operatorname{Ker} \phi \subset\left(J_{A} / J_{A}^{2}\right)^{2}$, because of $J^{t+1}=0$ for $t=\operatorname{rl}(A)$. If $\operatorname{rl}(A)=1$, then ϕ is clearly bijective. In order to prove that ϕ is surjective, it suffices to show that for any $m \geq 1$ and any $x \in J^{m}$, there exists $y \in\left(\phi\left(J / J^{2}\right)\right)^{m}$ such that $x-y \in J^{m+1}$. In the case of $m=1$, it is trivial. In the case of $m \geq 2$, for $x \in J^{m}$ we have $x=\sum_{i} v_{i} w_{i}$, where $v_{i} \in J$ and $w_{i} \in J^{m-1}$. Then there are $y_{i} \in \phi\left(J / J^{2}\right)$ and $z_{i} \in\left(\phi\left(J / J^{2}\right)\right)^{m-1}$ such that $v_{i}-y_{i} \in J^{2}$ and $w_{i}-z_{i} \in J^{m}$. Since $v_{i} \in J$ and $z_{i} \in J^{m-1}$, $v_{i} w_{i}-y_{i} z_{i}=v_{i}\left(w_{i}-z_{i}\right)+\left(v_{i}-y_{i}\right) z_{i} \in J^{m+1}$ and hence $x-\sum_{i} y_{i} z_{i} \in J^{m+1}$.
2. According to Proposition 3.13, we have a surjective k-algebra homomorphism $\phi: k \vec{Q} \rightarrow A$, where $\vec{Q}=\vec{Q}_{A}$. Let $t=\operatorname{rl}(A)+1$, then ϕ induces a surjective k-algebra homomorphism $\psi: k \vec{Q} / J_{+}^{t} \rightarrow A$. Since $k \vec{Q} / J_{+}^{t}$ is a finite dimensional k-algebra, $\operatorname{Ker} \psi$ is a finitely generated ideal. Hence $\operatorname{Ker} \phi$ is a finitely generated ideal $<\sigma_{1}, \ldots, \sigma_{s}>$ of $k \vec{Q}$, because J_{+}^{t} is a finitely generated ideal of $k \vec{Q}$. Since $\sigma_{h}=\sum_{i j} e_{i} \sigma_{h} e_{j}$, there is a set ρ of relations such that $\operatorname{Ker} \phi=<\rho>$.

Lemma 3.15. Let A be a hereditary finite dimensional k-algebra, I a two-sided ideal of A with $I \subset J_{A}^{2}$. Then A / I is not hereditary.

Proof. Consider the exact sequence in Mod A / I

$$
O \rightarrow I / I J_{A} \rightarrow J_{A} / I J_{A} \xrightarrow{\pi} J_{A} / I \rightarrow O .
$$

By Nakayama's Lemma, $I / I J_{A} \neq O$. Since J_{A} is A-projective, $J_{A} / I J_{A}$ is A / I projective. $I \subset J_{A}^{2}$ implies $I / I J_{A} \subset J_{A}^{2} / I J_{A}=J_{A / I}\left(J_{A} / I J_{A}\right)$, If J_{A} / I is A / I projective, then there is $\eta: J_{A} / I \rightarrow J_{A} / I J_{A}$ such that $\pi \eta=1_{J_{A} / I}$, and then $J_{A / I}\left(J_{A} / I J_{A}\right) \oplus \operatorname{Im} \eta=J_{A} / I J_{A}$. By Nakayama's Lemma, $\operatorname{Im} \eta=J_{A} / I J_{A}$ and $I / I J_{A}=O$. This is a contradiction. Hence J_{A} / I is not A / I-projective. By Proposition 2.8, we get the statement.

Proposition 3.16. Let A be a finite dimensional k-algebra with $A / J_{A} \cong k \times \cdots \times k$. Then the following are equivalent.

1. A is hereditary.
2. $A \cong k \vec{Q}_{A}$.

Proof. $1 \Rightarrow 2$. Let $f: A e_{i} \rightarrow A e_{j}$ be a non-zero A-homomorphism for primitive idempotents i, j. If f is not an isomorphism, then f is a monomorphism, because $\operatorname{Im} f$ is projective. Then there is no path $A e_{i_{1}} \rightarrow \cdots \rightarrow A e_{i_{n}}=A e_{i_{1}}$ of non-zero A-homomorphisms which are not isomorphisms. Hence \vec{Q} has no oriented cycle, $k \vec{Q}$ is a finite dimensional k - algebra. By Lemma $3.15, A \cong k \vec{Q}_{A}$.
$2 \Rightarrow 1$. By Proposition 2.9, it is trivial.

4. Base Extensions and Representations

Let k be a field and R a k-algebra. For a quiver with relations (\vec{Q}, ρ) over a field k, let e_{1}, \ldots, e_{n} be the set of idempotents corresponding to vertices in \vec{Q}, $A=k(\vec{Q}, \rho)$ and $A^{R}=R \otimes_{k} k(\vec{Q}, \rho)$. Then we can consider that $A^{R}=\bigoplus_{\text {path } w} R \bar{w}$ and $r \bar{w}=\bar{w} r$ for any $r \in R$ and any path w in \vec{Q}.

A left A^{R}-module M is a left A-module, and it is a direct sum $\bigoplus_{i=1}^{n} e_{i} M$ as an R-module. For any $\alpha \in Q_{1}$, we have

$$
\begin{aligned}
\alpha(r m) & =(\alpha r) m \\
& =(r \alpha) m \\
& =r(\alpha m)
\end{aligned}
$$

with $r \in R, m \in M$. Then $\psi^{M}(\alpha): e_{j} M \rightarrow e_{i} M$ is a left R-linear map, and we get a system $\left(e_{i} M ; \psi^{M}\right)$ of left R-modules satisfying

1. $e_{i} M$ is a left R-module for any i.
2. $\psi^{M}(\alpha)$ is a left R-linear map for any $\alpha \in Q_{1}$.
3. $\psi^{M}(\sigma)=0$ for any relation $\sigma \in \rho$.

For a left A^{R}-homomorphism $f: M \rightarrow N$, we get left R-linear maps $e_{i} f=f_{i}$: $e_{i} M \rightarrow e_{i} N(1 \leq i \leq n)$ such that

$$
\begin{equation*}
f_{i} \circ \psi^{M}(\alpha)=\psi^{N}(\alpha) \circ f_{j} \tag{4.1}
\end{equation*}
$$

for any $\alpha \in Q_{1}$.

Theorem 4.2. Let $A=k(\vec{Q}, \rho)$, and let $\operatorname{Rep}_{R / k}(\vec{Q}, \rho)$ be the category consisting of $M=\left(M(i)(1 \leq i \leq n) ; \psi^{M}(\alpha)\left(\alpha \in Q_{1}\right)\right)$ satisfying

1. $M(i)$ is a left R-module for any i.
2. $\psi^{M}(\alpha)$ is a left R-linear map for any $\alpha \in Q_{1}$.
3. $\psi^{M}(\sigma)=0$ for any relation $\sigma \in \rho$.
as objects, and of $\left(f_{i}: M(i) \rightarrow N(i)\right)_{1 \leq i \leq n}$ satisfying

$$
\begin{gathered}
f_{i} \circ \psi^{M}(\alpha)=\phi^{N}(\alpha) \circ f_{j} \\
M(j) \xrightarrow{\psi^{M}(\alpha)} M(i) \\
f_{j} \downarrow \\
N(j) \xrightarrow[\phi^{N}(\alpha)]{ } N(i)
\end{gathered}
$$

for M, N as morphisms. Then $\operatorname{Rep}_{R / k}(\vec{Q}, \rho)$ is equivalent to the category $\operatorname{Mod} A^{R}$ of left A^{R}-modules.

Sketch of The Proof. By the above, we can construct a functor from $\operatorname{Mod} A^{R}$ to $\operatorname{Rep}_{R / k}(\vec{Q}, \rho)$. Conversely, given $M=\left(M(i) ; \psi^{M}\right) \in \operatorname{Rep}_{R / k}(\vec{Q}, \rho)$, let $M=$ $\bigoplus_{i=1}^{n} M(i)$. For any $r \in R$, any arrow $\alpha: i \rightarrow j$ and $m \in M(i)$, we define the left A^{R}-action

$$
(r \alpha) m=r \psi^{M}(\alpha)(m)
$$

Then for any $r, s \in R$, any arrow $\alpha: i \rightarrow j, \beta: j \rightarrow l$ and $m \in M(i)$, we have

$$
\begin{aligned}
(s \beta)((r \alpha) m) & =(s \beta)\left(r \psi^{M}(\alpha)(m)\right) \\
& =\left(s \psi^{M}(\beta)\right)\left(r \psi^{M}(\alpha)(m)\right) \\
& =s\left(r \psi^{M}(\beta)\left(\psi^{M}(\alpha)(m)\right)\right) \\
& \left.=s r\left(\psi^{M}(\beta) \psi^{M}(\alpha)\right)(m)\right) \\
& =(s r \beta \alpha)(m)
\end{aligned}
$$

Therefore M becomes a left A^{R}-module. For a family $\left(f_{i}: M(i) \rightarrow N(i)\right)_{1 \leq i \leq n}$ of morphisms, let $f=\oplus_{i=1}^{n} f_{i}$. For any $r \in R$, any arrow $\alpha: i \rightarrow j$ and $m \in M(i)$, we have

$$
\begin{aligned}
f_{j}(r \alpha m) & =f_{j}\left(r \psi^{M}(\alpha)(m)\right) \\
& =r\left(f_{j} \circ \psi^{M}(\alpha)\right)(m) \\
& =r\left(\forall(\alpha) \circ f_{i}\right)(m) \\
& =(r \alpha) f_{i}(m)
\end{aligned}
$$

Hence f becomes a left A^{R}-homomorphism. It is easy to see that this construction defines a functor from $\operatorname{Rep}_{R / k}(\vec{Q}, \rho)$ to $\operatorname{Mod} A^{R}$, and it is an equivalence.

5. Examples related to Tachikawa's Conjecture

Conjecture 5.1 (Nakayama's Conjecture). Let A be a finite dimensional algebra over a field k, and

$$
O \rightarrow{ }_{A} A \rightarrow I^{0} \rightarrow I^{1} \rightarrow \ldots
$$

an injective resolution of a left A-module ${ }_{A} A$. If all I^{i} are projective, then A is self-injective.

Tachikawa showed that the above conjecture is equivalent to the pair of the following two conjectures.

Conjecture 5.2 (Tachikawa's Conjectures). Let A be a finite dimensional algebra over a field k, M a finitely generated left A-module.

1. If A is self-injective and $\operatorname{Ext}_{A}^{i}(M, M)=O$ for all $i \geq 1$, then M is projective.
2. If $\operatorname{Ext}_{A}^{i}(\mathrm{D} A, A)=O$ for all $i \geq 1$, then A is self-injective.
R. Schultz showed that 1 of Conjecture 5.2 is not true in the case of A being an artinian ring [Sc]. I introduce his examples here.

5.1. The Case of Algebras. For a quiver

$$
\vec{Q}: x \bigodot_{1}^{1} y
$$

with relations $\rho=\left\{y x-\delta x y, x^{2}, y^{2}\right\}$ where $\delta \in k^{\times}$. Then

$$
k \vec{Q}=\text { the free } k \text {-algebra } k<x, y>
$$

and the ideal

$$
\begin{aligned}
<\rho>= & k<x, y>(y x-\delta x y) k<x, y>+ \\
& k<x, y>x^{2} k<x, y>+k<x, y>y^{2} k<x, y>
\end{aligned}
$$

Therefore $k(\vec{Q}, \rho)=<1, \alpha, \beta, \alpha \beta>_{k}$ is a local k-algebra, where $\alpha=\bar{x}, \beta=\bar{y}$. The multiplication of $k(\vec{Q}, \rho)$ is

$$
\begin{aligned}
& \left(a 1+b_{1} \alpha+b_{2} \beta+c \alpha \beta\right)\left(a^{\prime} 1+b_{1}^{\prime} \alpha+b_{2}^{\prime} \beta+c^{\prime} \alpha \beta\right) \\
& =a a^{\prime} 1+\left(a b_{1}^{\prime}+a^{\prime} b_{1}\right) \alpha+\left(a b_{2}^{\prime}+a^{\prime} b_{1}\right) \beta+\left(a c^{\prime}+a^{\prime} c+b_{1} b_{2}^{\prime}+\delta b_{2} b_{1}^{\prime}\right) \alpha \beta
\end{aligned}
$$

with $a, b_{1}, b_{2}, c, a^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, c^{\prime} \in k$. Then we have
${ }_{A} A$:

Since it is easy to see that A has the simple socle, A is self-injective. Indeed, $\mathrm{D} A=<\mathrm{D} 1, \mathrm{D} \alpha, \mathrm{D} \beta, \mathrm{D}(\alpha \beta)>_{k}$

(We calculate the action as follows. $(\alpha \mathrm{D}(\alpha \beta))(\beta)=\mathrm{D}(\alpha \beta)(\beta \alpha)=\mathrm{D}(\alpha \beta)(\delta \alpha \beta)$ $=\delta$ implies $\alpha \mathrm{D}(\alpha \beta)=\delta \mathrm{D} \beta)$. Then every isomorphism from ${ }_{A} A$ to ${ }_{A} \mathrm{D} A$ is the form $\left[\begin{array}{cccc}a & 0 & 0 & 0 \\ b & \text { a } & 0 & 0 \\ d & 0 & a & 0 \\ d & c & b & a\end{array}\right]$ with $a \in k^{\times}$.

On the other hand, the opposite quiver with relations ($\left.\vec{Q}^{\mathrm{op}}, \rho^{\mathrm{op}}\right)$ is

$$
\vec{Q}^{\mathrm{op}}: x^{\mathrm{op}} \bigcap 1 \bigcirc y^{\mathrm{op}}
$$

with relations $\rho^{\mathrm{op}}=\left\{x^{\mathrm{op}} y^{\mathrm{op}}-\delta y^{\mathrm{op}} x^{\mathrm{op}},\left(x^{\mathrm{op}}\right)^{2},\left(y^{\mathrm{op}}\right)^{2}\right\} . A_{A}, \mathrm{D} A_{A}$ are the following

(Here, -- means the right action). Then every isomorphism from A_{A} to $\mathrm{D} A_{A}$ is the form $\left[\begin{array}{cccc}a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & 0 & \delta a & 0 \\ d & c & b & a\end{array}\right]$ with $a \in k^{\times}$. If $\delta=1$, then $A \cong \mathrm{D} A$ as A-bimodules and A is a symmetric k-algebra. Otherwise, $A \nsupseteq \mathrm{D} A$ as A-bimodules and A is not a symmetric k-algebra. For n, let $M_{n}=A\left(\alpha+(-\delta)^{n} \beta\right)$

$$
\left[\begin{array}{cc}
0 & 0 \\
(-\delta)^{n} & 0
\end{array}\right] \mathcal{F}^{2} \supseteq\left[\begin{array}{ll}
0 & 0 \\
\delta & 0
\end{array}\right]
$$

Then we have an exact sequence

$$
\begin{array}{llll}
O \longrightarrow A\left(\alpha+(-\delta)^{n-1} \beta\right) & \longrightarrow A \longrightarrow A\left(\alpha+(-\delta)^{n} \beta\right) \longrightarrow O \\
O \longrightarrow A \longrightarrow & M_{n-1} & \longrightarrow & \longrightarrow
\end{array}
$$

for each $n \in \mathbb{Z}$, and

$$
\begin{align*}
\operatorname{Hom}_{A}\left(M_{n}, A\right) & =\left\{\left.\left[\begin{array}{cc}
0 & 0 \\
a(-\delta)^{n} & 0 \\
b & a
\end{array}\right] \right\rvert\, a, b \in k\right\} \tag{5.3}\\
\operatorname{Hom}_{A}\left(M_{m}, M_{n}\right) & =\left\{\left.\left[\begin{array}{ll}
a & 0 \\
b & a
\end{array}\right] \right\rvert\,(-\delta)^{m} a=(-\delta)^{n} a, a, b \in k\right\}
\end{align*}
$$

And we have an exact sequence

$$
\begin{aligned}
O & \longrightarrow \operatorname{Hom}_{A}\left(M_{0}, M_{i}\right) \\
\operatorname{Hom}_{A}\left(M_{0}, M_{i+1}\right) & \longrightarrow \operatorname{Hom}_{A}\left(M_{0}, A\right) \longrightarrow \\
\operatorname{Ext}_{A}^{1}\left(M_{0}, M_{i}\right) & \longrightarrow
\end{aligned}
$$

for $i \geq 1$. If $-\delta$ is not a root of 1 , then by the equation 5.3 we have

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}\left(M_{0}, M_{0}\right)= & \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(M_{0}, M_{1}\right)-\operatorname{dim}_{k} \operatorname{Hom}_{A}\left(M_{0}, A\right)+ \\
& \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(M_{0}, M_{0}\right) \\
= & 1-2+2=1 \\
\operatorname{dim}_{k} \operatorname{Ext}_{A}^{i}\left(M_{0}, M_{0}\right)= & \operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}\left(M_{0}, M_{i-1}\right) \\
= & \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(M_{0}, M_{i+1}\right)-\operatorname{dim}_{k} \operatorname{Hom}_{A}\left(M_{0}, A\right)+ \\
& \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(M_{0}, M_{i-1}\right) \\
= & 1-2+1=0 \\
& \text { for } i \geq 2
\end{aligned}
$$

Proposition 5.5. Assume that $-\delta$ is not a root of 1 . Let $M=A(\alpha+\beta)$, then we have $\operatorname{Ext}_{A}^{i}(M, M)=O$ for all $i \geq 2$.

Proposition 5.6. Assume that $-\delta$ is not a root of 1 . Let $M=A(\alpha+\beta)$, and $\cdots \rightarrow A \rightarrow A \rightarrow M \rightarrow O$ a minimal projective resolution, then all syzygy A modules $\Omega^{n} M$ have k-dimension 2, and they are non-isomorphic each other.
5.2. The Case of Rings. Let $A=k(\vec{Q}, \rho)$ be a finite dimensional k-algebra given in §5.1. Let K be a skew field which is a k-algebra, and $B=A^{K}$. Then $\operatorname{Hom}_{K}\left(K^{-},{ }_{K} K\right)$ and $\operatorname{Hom}_{K}\left(-_{K}, K_{K}\right)$ induce a duality between $\operatorname{rep}_{K / k}(\vec{Q}, \rho)$ and $\operatorname{rep}_{K / k}\left(\vec{Q}^{\mathrm{op}}, \rho^{\mathrm{op}}\right)$. Hence B is a local self-injective artinian ring. According to Theorem 4.2, $\operatorname{Mod} B$ is is equivalent to $\operatorname{Rep}_{R / k}(\vec{Q}, \rho)$. For a representation $M=$ $\left(M, \psi^{M}\right), \psi^{M}(\alpha)$ is a left K-linear map for any arrow α. Then ψ^{M} is represented by the set of the right multiplications of matrices of K, and their matrix compositions are the opposite compositions of maps (i.e. we take row vectors as elements of K-vector spaces in this subsection). Therefore by taking the transpose of matrices in ${ }_{A} A$ of $\S 5.1$, we have a representation ${ }_{B} B$ in $\operatorname{Rep}_{R / k}(\vec{Q}, \rho)$

For $\lambda \in K^{\times}$, let $M_{\lambda}=B(\alpha+\lambda \beta)$, then M is represented by

$$
\left[\begin{array}{ll}
0 & \lambda \\
0 & 0
\end{array}\right] K^{2} 〕\left[\begin{array}{ll}
0 & \delta \\
0 & 0
\end{array}\right]
$$

Lemma 5.7. The following hold.

1. $\operatorname{Hom}_{B}\left(M_{\lambda}, M_{\mu}\right)=\left\{\left.\left[\begin{array}{cc}a & b \\ 0 & a\end{array}\right] \right\rvert\, \lambda a=a \mu, a, b \in K\right\}$
2. $\operatorname{Hom}_{B}\left(M_{\lambda}, B\right)=\left\{\left.\left[\begin{array}{cccc}0 & a & \lambda a & b \\ 0 & 0 & 0 & a\end{array}\right] \right\rvert\, a, b \in K\right\}$

Lemma 5.8. For $n \in \mathbb{Z}, \lambda \in K^{\times}$and $\delta \in k^{\times}$, we have an exact sequence

$$
O \rightarrow M_{\lambda(-\delta)^{n}} \xrightarrow{\eta_{n}} B \xrightarrow{\theta_{n+1}} M_{\lambda(-\delta)^{n+1}} \rightarrow O
$$

where $\eta_{n}=\left[\begin{array}{llll}0 & 1 & \lambda(-\delta)^{n} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, and $\theta_{n+1}=\left[\begin{array}{cc}1 & 0 \\ 0 & \lambda(-\delta)^{n+1} \\ 0 & \delta \\ 0 & 0\end{array}\right]$.
Proposition 5.9. If $\delta \in k^{\times}$and $\lambda \in K^{\times}$satisfy
(i) λ and $\lambda(-\delta)^{n}$ are not conjugate in K^{\times}for $n \geq 1$,
(ii) for any $n \geq 0$ and any $b \in K$, there exists $a \in K$ such that $\lambda a-a \lambda(-\delta)^{n}=b$, then $\operatorname{Ext}_{B}^{i}\left(M_{\lambda}, M_{\lambda}\right)=0$ for any $i \geq 1$, and $\operatorname{End}_{B}\left(M_{\lambda}\right)$ is neither left artinian nor right artinian.

Proof. By Lemma 5.8, for $n \geq 0$, we have an exact sequence

$$
O \rightarrow M_{\lambda(-\delta)^{n}} \xrightarrow{\eta_{n}} B \xrightarrow{\theta_{n+1}} M_{\lambda(-\delta)^{n+1}} \rightarrow O .
$$

Then in order to prove the first part, it suffices to show that

$$
O \rightarrow \operatorname{Hom}_{B}\left(M_{\lambda}, M_{\lambda(-\delta)^{n}}\right) \quad \begin{aligned}
& \xrightarrow{\operatorname{Hom}_{B}\left(M_{\lambda}, \eta_{n}\right)} \operatorname{Hom}_{B}\left(M_{\lambda}, B\right) \\
& \operatorname{Hom}_{B}\left(M_{\lambda}, \theta_{n+1}\right) \\
& \operatorname{Hom}_{B}\left(M_{\lambda}, M_{\lambda(-\delta)^{n+1}}\right) \rightarrow O .
\end{aligned}
$$

is an exact sequence for $n \geq 0$. By Lemma 5.71 and assumption 1 , we have

$$
\begin{aligned}
\operatorname{Hom}_{B}\left(M_{\lambda}, M_{\lambda(-\delta)^{n+1}}\right) & =\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \right\rvert\, \lambda a=a \lambda(-\delta)^{n+1}, a, b \in K\right\} \\
& =\left\{\left.\left[\begin{array}{lll}
0 & b \\
0 & 0
\end{array}\right] \right\rvert\, b \in K\right\}
\end{aligned}
$$

According to Lemma 5.7 2, we have

$$
\operatorname{Im} \operatorname{Hom}_{B}\left(M_{\lambda}, \theta_{n+1}\right)=\left\{\left.\left[\begin{array}{c}
0 \\
0 \\
0 \\
\lambda a \delta+a \lambda(-\delta)^{n+1} \\
0
\end{array}\right] \right\rvert\, a \in K\right\}
$$

By assumption 2, there exists $a \in K$ such that $\lambda a-a \lambda(-\delta)^{n}=b \delta^{-1}$. For the second part, by Lemma 5.7 1, we have

$$
\operatorname{End}_{B}\left(M_{\lambda}\right)=\left\{\left.\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right] \right\rvert\, \lambda a=a \lambda, a, b \in K\right\}
$$

Let $\partial_{\lambda}: K \rightarrow K$ be a map defined by $\partial_{\lambda}(a)=\lambda a-a \lambda$ for $a \in K$. Then ∂_{λ} is an additive group homomorphism and $F=\operatorname{Ker} \partial_{\lambda}$ is a skew subfield. For any $s \in F$, $a \in K$, we have

$$
\begin{aligned}
\partial_{\lambda}(s a) & =\lambda s a-s a \lambda \\
& =s \lambda a-s a \lambda \\
& =s \partial_{\lambda}(a)
\end{aligned}
$$

Therefore K is a left F-vector space and ∂_{λ} is a left F-linear map. Similarly K is a right F-vector space and ∂_{λ} is a right F-linear map. We have $\operatorname{dim}_{F} K=\operatorname{dim} K_{F}=$ ∞, because $O \rightarrow F \rightarrow K \xrightarrow{\partial_{\lambda}} K \rightarrow O$ is exact. It is easy to see $\operatorname{End}_{B}\left(M_{\lambda}\right) \cong F \ltimes K$ (this is a trivial extension of F by K).

Proposition 5.10. There are a skew field K, its commutative subfield $k, \lambda \in K^{\times}$ and $\delta \in k^{\times}$such that K is a k-algebra and that they satisfy the conditions (i) and (ii) of Proposition 5.9.

Proof. According to [Co1] or [Co2] Section 8, there are a skew field L and $\lambda \in L$ such that the inner derivation $\partial_{\lambda}: L \rightarrow L$ is surjective. Let K be the skew field $L\{X\}$ of formal Laurant polynomials, and $\delta=-X$. For $0 \neq f=\sum_{i} \nu_{i} X^{i} \in K$, we denote by $\operatorname{deg}_{\text {min }} f=\min \left\{i \mid \nu_{i} \neq 0\right\}$. Then $\operatorname{deg}_{\text {min }} f^{-1}=-\operatorname{deg}_{\text {min }} f$. Therefore λ and λX^{n} are not conjugate for $n \geq 1$, because $\operatorname{deg}_{\min } \lambda \neq \operatorname{deg}_{\min } \lambda X^{n}$. Let $\partial_{\lambda, n}: K \rightarrow K$ be the map defined by $\partial_{\lambda, n}(a)=\lambda a-a \lambda X^{n}$. Let $g=\sum_{i} \nu_{i} X^{i} \in K$. In the case $n=0$, there is $\mu_{i} \in L$ such that $\lambda \mu_{i}-\mu_{i} \lambda=\nu_{i}$. Let $f=\sum_{i} \mu_{i} X^{i}$, then $\partial_{\lambda, 0}(f)=g$. In the case $n \geq 1, f=\sum_{i=1}^{\infty} \lambda^{-i} g \lambda^{i-1} X^{n(i-1)}$. Hence we have

$$
\begin{aligned}
\lambda f-f \lambda X^{n} & =\sum_{i=1}^{\infty} \lambda^{-i+1} g \lambda^{i-1} X^{n(i-1)}-\sum_{i=1}^{\infty} \lambda^{-i} g \lambda^{i} X^{n i} \\
& =g .
\end{aligned}
$$

We take $k=$ the center $\mathrm{Z}(K)$ of K. Then k satisfies the desired property, because of $X \in \mathrm{Z}(K)$.

6. Appendix

In this section, we recall some properties of homological algebra without proofs. The reader see e.g. [Ro] for details.
Definition 6.1 (Category). We define a category \mathcal{C} by the following data:

1. A class $\mathrm{Ob} \mathcal{C}$ of elements called objects of \mathcal{C}.
2. For a ordered pair (X, Y) of objects a set $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ of morphisms is given such that $\operatorname{Hom}_{\mathcal{C}}(X, Y) \cap \operatorname{Hom}_{\mathcal{C}}\left(X^{\prime}, Y^{\prime}\right)=\phi$ for $(X, Y) \neq\left(X^{\prime}, Y^{\prime}\right)$ (an element f of $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is called a morphism, and denote by $\left.f: X \rightarrow Y\right)$.
3. For each triple (X, Y, Z) of objects of \mathcal{C} a map

$$
\theta(X, Y, Z): \operatorname{Hom}_{\mathcal{C}}(X, Y) \times \operatorname{Hom}_{\mathcal{C}}(Y, Z) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z)
$$

(θ is called the composition map) is given.
4. The composition map θ is associative.
5. For each object X of \mathcal{C}, there is a morphism $1_{X}: X \rightarrow X$ such that for any $g: Y \rightarrow X, h: X \rightarrow Z$ we have $1_{X} g=g, h 1_{X}=h$.
Definition 6.2 (Complex). A diagram $X^{\cdot}: \ldots \rightarrow X^{i-1} \xrightarrow{d^{i-1}} X^{i} \xrightarrow{d^{i}} X^{i+1} \rightarrow \ldots$ is called a (cochain) complex if $d^{i+1} d^{i}=0$ for all i, that is, $\operatorname{Im} d^{i-1} \subset \operatorname{Ker} d^{i}$ for all i. A complex X^{\cdot} is called exact if $\operatorname{Im} d^{i-1}=\operatorname{Ker} d^{i}$ for all i. Sometimes, we call an exact sequence for an exact complex. For a complex $X^{\cdot}, \mathrm{H}^{n}\left(X^{\cdot}\right)=\operatorname{Ker} d^{n} / \operatorname{Im} d^{n}$ is called the n-th cohomology.

Lemma 6.3. Let $O \rightarrow V_{0} \rightarrow V_{1} \rightarrow \ldots \rightarrow V_{n} \rightarrow O$ be an exact sequence of k-vector spaces. Then we have

$$
\operatorname{dim}_{k} V_{0}=\sum_{i=1}^{n}(-1)^{i} \operatorname{dim}_{k} V_{i}
$$

Definition 6.4. For $f: X \rightarrow Y$ in $\operatorname{Mod} A, \operatorname{Hom}_{A}(X, Y)=$ the set of left A linear maps from X to Y. For $M \in \operatorname{Mod} A$, we have the following additive group homomorphisms

$$
\begin{gathered}
\operatorname{Hom}_{A}(M, X) \xrightarrow{\operatorname{Hom}_{A}(M, f)} \operatorname{Hom}_{A}(M, Y)(g \mapsto f \circ g) \\
\operatorname{Hom}_{A}(Y, M) \xrightarrow{\operatorname{Hom}_{A}(M, f)} \operatorname{Hom}_{A}(X, M)(h \mapsto h \circ f) .
\end{gathered}
$$

Definition 6.5 (Projective, Injective Module). A left A-module M is called A projective if for any surjective A-linear map $X \rightarrow Y$ we have a surjective additive group homomorphism $\operatorname{Hom}_{A}(M, X) \xrightarrow{\operatorname{Hom}_{A}(M, f)} \operatorname{Hom}_{A}(M, Y)$. Similarly, a left A module M is called A-injective if for any injective A-linear map $X \rightarrow Y$ we have a surjective additive group homomorphism $\operatorname{Hom}_{A}(Y, M) \xrightarrow{\operatorname{Hom}_{A}(M, f)} \operatorname{Hom}_{A}(X, M)$.
Proposition 6.6. A left A-module A is A-projective. In the case of A being a finite dimensional k-algebra, D A is a injective left A-module.
Proposition 6.7. For a left A-module M, the following hold.

1. M is A-projective if and only if any surjective A-linear map $f: X \rightarrow M$ splits (i.e. there exists $g: M \rightarrow X$ such that $g f=1_{M}$).
2. M is A-injective if and only if any injective A-linear map $f: M \rightarrow Y$ splits (i.e. there exists $g: Y \rightarrow M$ such that $f g=1_{M}$).

Proposition 6.8. For a left A-module M, the following hold.

1. There exists a set I and $f: A^{(I)} \rightarrow M$ such that f is surjective.
2. There exists a injective A-module E and $g: M \rightarrow E$ such that g is injective.

Definition 6.9 (Projective, Injective Resolution). For a left A-module M, according to Proposition 6.8, we have a surjective A-linear map $\epsilon_{0}: P_{0} \rightarrow M$ with P_{0} being A-projective. For $\operatorname{Ker} \epsilon_{0}$, we have a surjective A-linear map $\epsilon_{1}: P_{1} \rightarrow \operatorname{Ker} \epsilon_{0}$ with P_{1} being A-projective. Therefore we have an exact complex

$$
\ldots \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow O
$$

with P_{i} being A-projective The complex $P_{\text {. }}: \ldots \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0}$ is called projective resolution of M.

Similarly, we have an exact complex

$$
O \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \ldots \rightarrow I^{n} \rightarrow \ldots
$$

with I^{i} being A-injective The complex $I^{\cdot}: I^{0} \rightarrow I^{1} \rightarrow \ldots \rightarrow I^{n} \rightarrow \ldots$ is called injective resolution of M.

When we have a projective resolution

$$
O \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow O
$$

we say that the projective dimension of M is at most n, denote by $\operatorname{pdim}_{A} M \leq n$. Similarly, when we have an injective resolution

$$
O \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \ldots \rightarrow I^{n} \rightarrow O
$$

we say that the injective dimension of M is at most n, denote by $\operatorname{idim}_{A} M \leq n$.
The left global dimension $\operatorname{lgldim} A$ of A is the supremum of $\operatorname{pdim} M$ of left A modules M.

Theorem 6.10 (Higher Extension Groups). The following hold.

1. Let $\ldots \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow X \rightarrow O$ be a projective resolution of a left A-module X. Then for any $Y \in \operatorname{Mod} A$ and any $n \geq 0, \mathrm{H}^{n} \operatorname{Hom}_{A}(P ., Y)$ is determined independent of choice of projective resolutions.
2. Let $O \rightarrow Y \rightarrow I^{0} \rightarrow I^{1} \rightarrow \ldots \rightarrow I^{n} \rightarrow \ldots$ be an injective resolution of a left A-module Y. Then for any $M \in \operatorname{Mod} A$ and any $n \geq 0, \mathrm{H}^{n} \operatorname{Hom}_{A}\left(X, I^{\cdot}\right)$ is determined independent of choice of injective resolutions.
3. For $X, Y \in \operatorname{Mod} A$, we have $\mathrm{H}^{n} \operatorname{Hom}_{A}\left(P_{X}, Y\right) \cong \mathrm{H}^{n} \operatorname{Hom}_{A}\left(X, I_{\dot{Y}}\right)$ for $n \geq 0$, where P_{X}. (resp., I_{Y}) is a projective (resp., an injective) resolution of X (resp., Y).
The additive group $\mathrm{H}^{n} \operatorname{Hom}_{A}\left(P_{X .}, Y\right) \cong \mathrm{H}^{n} \operatorname{Hom}_{A}\left(X, I_{\dot{Y}}\right)$ is called the n-th Extension group $\operatorname{Ext}_{A}^{n}(X, Y)$.

Proposition 6.11. The following hold.

1. If P is A-projective, then $\operatorname{Ext}_{A}^{n}(P, Y)=0$ for $n \geq 1$.
2. If I is A-injective, then $\operatorname{Ext}_{A}^{n}(X, I)=0$ for $n \geq 1$.
3. For an exact sequence $O \rightarrow X \rightarrow Y \rightarrow Z \rightarrow O$ in $\operatorname{Mod} A$, we have long exact sequences

$$
\begin{aligned}
O \rightarrow & \operatorname{Hom}_{A}(M, X) \rightarrow \quad \operatorname{Hom}_{A}(M, Y) \rightarrow \operatorname{Hom}_{A}(M, Z) \rightarrow \\
& \operatorname{Ext}_{A}^{1}(M, X) \rightarrow \quad \operatorname{Ext}_{A}^{1}(M, X) \rightarrow \operatorname{Ext}_{A}^{1}(M, X) \rightarrow \\
& \operatorname{Ext}_{A}^{2}(M, X) \rightarrow \ldots,
\end{aligned}
$$

and

$$
\begin{aligned}
O \rightarrow & \operatorname{Hom}_{A}(Z, M) \rightarrow \quad \operatorname{Hom}_{A}(Y, M) \rightarrow \operatorname{Hom}_{A}(X, M) \rightarrow \\
& \operatorname{Ext}_{A}^{1}(Z, M) \rightarrow \quad \operatorname{Ext}_{A}^{1}(Y, M) \rightarrow \operatorname{Ext}_{A}^{1}(X, M) \rightarrow \\
& \operatorname{Ext}_{A}^{2}(Z, M) \rightarrow \ldots .
\end{aligned}
$$

Lemma 6.12 (Nakayama's Lemma). Let A be a ring with unity, J the Jacobson radical of A, and M a finitely generated left A-module. For a left A-submodule N of M, if $J M+N=M$, then $N=M$.

Definition 6.13 (Minimal Projective resolution). Let M be a finitely generated left A-module. A projective resolution of M

$$
\ldots \rightarrow P_{n} \rightarrow \ldots \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \rightarrow M \rightarrow O
$$

is called a minimal projective resolution provided that $\operatorname{Im} d_{i} \subset J P_{i-1}$ for all $i \geq 1$. This resolution does not exists in general. In the case of A being left artinian, a minimal projective resolution exists for any finitely generated left A-module.
Definition 6.14 (Indecomposable Module). A left A-module M is called indecomposable provided that if $M=X \oplus Y$, then X or $Y=O$.

Definition 6.15. Let A and B be k-algebras. The tensor product $A \otimes_{k} B$ is the k-algebra defined by

$$
\begin{aligned}
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right) & =a a^{\prime} \otimes b b^{\prime} \\
1_{A \otimes B} & =1_{A} \otimes 1_{B}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left(1_{A} \otimes b\right)\left(a \otimes 1_{B}\right) & =a \otimes b \\
& =\left(a \otimes 1_{B}\right)\left(1_{A} \otimes b\right)
\end{aligned}
$$

Definition 6.16 (The Skew Field of Formal Laurant Polynomials). For a skew field L, let

$$
L\{X\}=\left\{\sum_{i=n}^{\infty} a_{i} X^{i} \mid n \in \mathbb{Z}, a_{i} \in L\right\}
$$

We define the multiplication of $\Sigma_{i=m}^{\infty} a_{i} X^{i}, \Sigma_{j=n}^{\infty} b_{j} X^{j} \in L\{X\}$ by

$$
\left(\Sigma_{i=m}^{\infty} a_{i} X^{i}\right)\left(\Sigma_{j=n}^{\infty} b_{j} X^{j}\right)=\Sigma_{k=m+n}^{\infty}\left(\Sigma_{i+j=k} a_{i} b_{j}\right) X^{k}
$$

and define

$$
\operatorname{deg}_{\min }\left(\Sigma_{i=m}^{\infty} a_{i} X^{i}\right)=m
$$

if $a_{m} \neq 0$. Then we have

$$
\operatorname{deg}_{\min }(f g)=\operatorname{deg}_{\min }(f)+\operatorname{deg}_{\min }(g)
$$

for non-zero polynomials $f, g \in L\{X\}$. It is easy to see that $L\{X\}$ is a skew field.

References

[ARS] M. Auslander, I. Reiten and Sverre O. Smalø, "Representation Theory of Artin Algebras," Cambridge Studies in Advanced Math. 36, Cambridge, UK 1997 (corrected paperback edition).
[Co1] P. M. Cohn, The range of derivations on a skew field and the equation $a x-x a=c$, J . Indian Math. Soc. 37 (1973) 61-69.
[Co2] P. M. Cohn, "Skew Fields," Encyclopedia of Math. and Its Appl. 57, Cambridge, UK 1995.
[Rl] C.M. Ringel, "Tame Algebras and Integral Quadratic Forms," Lecture Notes in Math. 1099, Springer-Verlag, Berlin, 1984.
[Ro] J. J. Rotman, "An introduction to homological algebra," Pure and Applied Mathematics 85, Academic Press, 1979.
[Sc] R. Schultz, A non-projective module without self-extensions, preprint.
J. Miyachi: Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo, 184-8501, Japan

E-mail address: miyachi@u-gakugei.ac.jp

