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1. Categories and Functors

Definition 1.1 (Category). We define a category C by the following data:
1. A class ObC of elements called objects of C.
2. For a ordered pair (X, Y ) of objects a set HomC(X, Y ) of morphisms is given

such that HomC(X,Y )∩HomC(X′, Y ′) = φ for (X,Y ) �= (X ′, Y ′) (an element
f of HomC(X,Y ) is called a morphism, and denote by f : X → Y ).
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3. For each triple (X, Y, Z) of objects of C a map

θ(X,Y, Z) : HomC(X, Y ) ×HomC(Y,Z) → HomC(X,Z)

(θ is called the composition map) is given.
4. The composition map θ is associative.
5. For each object X of C, there is a morphism 1X : X → X such that for any

g : Y → X, h : X → Z we have 1Xg = g, h1X = h.

X ∈ Ob C (often X ∈ C) means that X is an object of C.

Example 1.2. The following often appear in this note.
1. Set is the category consisting of sets as objects and maps as morphisms.
2. Ab is the category consisting of abelian groups as objects and group mor-

phisms as morphisms.
3. For a ring A, ModA is the category consisting of right A-modules as objects

and A-homomorphisms as morphisms.

Definition 1.3 (Opposite Category). For a category C, the opposite category Cop

of C is defined by
1. ObCop = ObC.

(for X ∈ C, we denote by Xop ∈ Cop the same object)
2. For Xop, Y op ∈ Ob Cop,

HomCop (Xop , Y op) = HomC(Y, X).

(for f ∈ HomC(Y,X), we denote by fop ∈ HomCop (Xop, Y op ))
3. The composition map θop is defined by θop(fop, gop ) = θ(g, f)op .

Definition 1.4. Let f : X → Y be a morphism in a category C.
1. f is called a monomorphism if fu = fv implies u = v.
2. f is called an epimorphism if uf = vf implies u = v.
3. f is called a split monomorphism if there is g : Y → X such that gf = 1X.
4. f is called a split epimorphism if there is g : Y → X such that fg = 1Y .
5. f is called an isomorphism if there is g : Y → X such that gf = 1X and

fg = 1Y .
We often write � for an epimorphism, and � for a monomorphism.

Definition 1.5 (Functor). For categories C and C′, a covariant functor (resp., con-
travariant functor) F : C → C′ consists of the following data:

1. A map F : ObC → Ob C′.
2. For X,Y ∈ Ob C, a map

FX,Y : HomC(X, Y ) → HomC′(FX,FY )
(resp., FX,Y : HomC(X,Y ) → HomC′(FY,FX))

such that F (gf) = F (g)F (f) (resp., F (gf) = F (f)F (g)), F (1X) = 1F (X).
Here we write simply F (f) instead of FX,Y (f).

Example 1.6. In a category C, for X ∈ C, we define the covariant (resp., con-
travariant) functor

hX : C → Set

(resp., hX : C → Set)

by hX(Y ) = HomC(X,Y ) (resp., hX(Y ) = HomC(Y,X)).
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Definition 1.7 (Functorial Morphism). For covariant (resp., contravariant) func-
tors F,G : C → C′, a functorial morphism α : F → G consists of the following
data:

1. For each X ∈ C, αX : FX → GX in C′ is given.
2. For any morphism f : X → Y (resp., f : Y → X) in C, we have the following

commutative diagram in C′

FX
αX−−−−→ GX

F (f)

� �G(f)

FY
αY−−−−→ GY.

In the case that a functorial morphism α is called a functorial isomorphism if αX

are isomorphisms for all X ∈ C.
We denote by Mor(F, G) the collection of all functorial morphisms from F to G.

Lemma 1.8 (Representable Functor). For a covariant (resp., contravariant) func-
tor F : C → Set, the following are equivalent for C ∈ C.

1. F is isomorphic to hC (resp., hC).
2. There exists c ∈ F (C) satisfying that

for any X ∈ C and x ∈ F (X), there is a unique f ∈ HomC(C,X) (resp.,
f ∈ HomC(X, C)) such that x = F (f)(c).

A covariant (resp., contravariant) functor F : C → Set is called representable
if there exists C ∈ C such that F is isomorphic to hC . Similarly, a contravariant
functor F ′ : C → Set is called representable if there exists C ∈ C such that F is
isomorphic to hC .

Lemma 1.9 (Yoneda’s Lemma). For X ∈ C and a covariant (resp., contravariant)
functor F : C → Set, we have the bijection

θ− : FX → Mor(hX , F ) (resp., θ− : FX → Mor(hX , F )),

where θ− is defined by (θx)Y (f) = F (f)(x) for x ∈ FX, Y ∈ C, f ∈ hX(Y ) (resp.,
f ∈ hX(Y )).

Corollary 1.10. For X, Y ∈ C, we have the bijection

h− : HomC(Y, X) → Mor(hX , hY ) (resp., h− : HomC(X,Y ) → Mor(hX , hY )).

Definition 1.11. Let F : C → C′ be a functor.
1. F is called full if FX,Y : HomC(X, Y ) → HomC(FX,FY ) are surjective for all

X,Y ∈ C.
2. F is called faithful if FX,Y : HomC(X, Y ) → HomC(FX,FY ) are injective for

all X, Y ∈ C.
3. F is called dense if for any Y ∈ C′, there is X ∈ C such that Y is isomorphic

to FX.

Definition 1.12 (Limit, Colimit). Let I, C be categories and X ∈ C. We denote
by XI : I → C the constant functor such that XI(i) = X for all i ∈ I and
XI(f) = 1X for all f ∈ HomI(i, j).
For a functor F : I → C, an object X of C is called the colimit colim F (resp., the
limit lim F ) of F provided that for all Y ∈ C we have

Mor(F, YI) ∼= HomC(X,Y )
(resp., Mor(YI , F ) ∼= HomC(Y,X)).



4 JUN-ICHI MIYACHI

Definition 1.13 (Filtered Colimit). A small category I is called a filtered category
provided that

1. For any i, j ∈ I, there exists k ∈ I and morphisms i → k, j → k in I.
2. For two morphisms f, g : i → j, there is a morphism h : j → k such that

hf = hg.
For a covariant (resp., contravariant) functor F : I → C from a filtered category

I to a category C, the filtered colimit lim−→F (resp., the filtered limit lim←−F ) of F is
the colimit colim F (resp., the limit lim F ).

Definition 1.14 (Product, Coproduct). For a collection {Xi}i∈I of objects in-
dexed by a set I, X is called a coproduct

∐
i∈IXi (resp., a product

∏
i∈IXi) of

{Xi}i∈I provided that
1. There are a collection of morphisms {qi : Xi → X}i∈I

(resp., {pi : X → Xi}i∈I).
2. For any Y ∈ C and {fi : Xi → Y }i∈I (resp., {pi : Y → Xi}i∈I), there exists

a unique morphism f : X → Y (resp., f : Y → X) with fi = fqi (resp.,
fi = pif) for all i.

If a coproduct
∐

i∈IXi is also a product, then it is called a biproduct of {Xi}i∈I

and denoted by
⊕

i∈IXi.

Definition 1.15 (Bifunctor). Let C1,C2 and D be categories. The product category
C1 × C2 is the category consisting of pairs (X1, X2) of objects X1 ∈ ObC1 and
X2 ∈ ObC2 as objects, and pairs (f1, f2) of morphisms f1 in C1 and f2 in C2 as
morphisms. A bifunctor is the functor F : C1 × C2 → D.

For bifunctors F,G : C1 × C2 → D, a bifunctorial morphism α : F → G is a
functorial morphism of functors C1 × C2 → D.

Then a bifunctor F : C1 × C2 → D consists of the following data:
1. For X1 ∈ C1, F (X1,−) : C2 → D is a functor.
2. For X2 ∈ C2, F (−, X2) : C1 → D is a functor.
3. For a morphism f1 : X1 → Y1 in C1, F (f1,−) : F (X1,−) → F (Y1,−) is a

functorial morphism.
(or equivalently, for a morphism f2 : X2 → Y2 in C1, F (−, f2) : F (−, X2) →
F (−, X2) is a functorial morphism.)

And a bifunctorial morphism α : F → G consists of the following data:
1. For each (X1, X2) ∈ C1×C2, α(X1,X2) : F (X1, X2) → G(X1, X2) in D is given.
2. For X1 ∈ C1, α(X1,−) : F (X1,−) → G(X1,−) is a functorial morphism.
3. For X2 ∈ C2, α(−,X2) : F (−,X2) → G(−,X2) is a functorial morphism.

In the case that a bifunctorial morphism α is called a bifunctorial isomorphism if
α(X1,X2) are isomorphisms for all (X1, X2) ∈ C1 × C2.

Definition 1.16 (Adjoint). Let F : C → C′, G : C ′ → C be covariant functors. We
say that F is a left adjoint of G (or G is a right adjoint of F ) (denote by F � G) if
there is a bifunctorial isomorphism t(−, ?) : HomC′(F−, ?) → HomC(−,G?).
In this case, let σX = t(X,FX)(1F X) and τY = t(GY, Y )−1(1GY ) for X ∈ C,
Y ∈ C′. (σ : 1C → GF and τ : FG → 1C′ are called the adjunction arrows.)

For contravariant functors F ′ : C → C′, G′ : C′ → C, a pair (F ′, G′) is called a
right adjoint pair if there is a bifunctorial isomorphism t′(−, ?) : HomC′(−, F?) →
HomC(?, G′−). There are adjunction arrows σ : 1C → G′F ′ and τ : 1C′ → F ′G′.
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Remark 1.17. According to Corollary 1.10, it is easy to see that a right (resp.,
left) adjoint is uniquely determined up to isomorphism. And in the above, we have

Gτ◦σG = 1G and τF◦Fσ = 1F .

Theorem 1.18. For a covariant functor F : C → C′, the following hold.
1. F has a right adjoint if and only if hY ◦F : C → Set is representable for any

Y ∈ C′.
2. F has a left adjoint if and only if hX ◦ F : C → Set is representable for any

X ∈ C′.

Theorem 1.19. Let F : C → C′, G : C ′ → C be covariant functors such that F � G.
Then the following are equivalent.

1. G is fully faithful.
2. The adjunction arrow τ : FG → 1C′ is a functorial isomorphism.

Sketch.

HomC(X,Y )

GX,Y

��

Hom(τX ,Y )

����������������

HomC(GX,GY ) ∼ �� HomC(FGX,Y )

Theorem 1.20 (Equivalence). For a functor F : C → C′, the following are equiv-
alent.

1. F is fully faithful and dense.
2. There is a functor G : C′ → C such that GF ∼= 1C and FG ∼= 1C′ .

In this case, F is called an equivalence and we say that C and C′ are equivalent.

Theorem 1.21. Let F : C → C′ be a covariant functor and let G be a right adjoint
of F . Then the following hold.

1. F preserves the colimit in C of any functor.
2. G preserves the limit in C ′ of any functor.

2. Additive Categories and Abelian Categories

In a category C, an object U is called an initial object if for any X ∈ C HomC(U,X)
has only one element, V is called a terminal object if for any X ∈ C HomC(X,V )
has only one element, and O is called a null object if O is initial and terminal.

Definition 2.1 (Preadditive Category). A category C with a null object is called a
preadditive category provided that HomC(X, Y ) is an abelian group for any X,Y ∈
C, and that the composition map θ is bilinear.

Definition 2.2 (Additive functor). Let C, C ′ be preadditive categories. A covari-
ant (resp., contravariant) functor F : C → C′ between preadditive categories is
called an additive functor provided that for X,Y ∈ C,

FX,Y : HomC(X, Y ) → HomC′(FX,FY )
(resp., FX,Y : HomC(X,Y ) → HomC′(FY,FX))

is a group morphism.
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Proposition 2.3. Let {Xi}1≤i≤n be a finite collection of objects of a preadditive
category C. Then the following are equivalent.

1. A coproduct
∐n

i=1Xi of {Xi}1≤i≤n exists in C.
2. A product

∏n
i=1Xi of {Xi}1≤i≤n exists in C.

3. There exist an object X ∈ C and morphisms ui : Xi → X, pi : X → Xi

(1 ≤ i ≤ n) such that

(a) Σn
i=1uipi = 1X .

(b) piuj =

{
0 if i �= j

1Xi if i = j.

Moreover, the above coproduct is naturally isomorphic to the above product.

Proposition 2.4. Let F : C → C′ be an additive functor between preadditive cate-
gories, {Xi}1≤i≤n a finite collection of objects in C. If the coproduct

∐n
i=1Xi exists

in C, then the coproduct
∐n

i=1F (Xi) exists in C′ and is canonically isomorphic to
F (

∐n
i=1Xi).

Definition 2.5 (Additive Category). A preadditive category C is called an additive
functor if C satisfies Proposition 2.3 for any finite collection of objects in C.

Example 2.6. Let C be an additive category. For M ∈ C, We define AddM (resp.,
addM) the full subcategory of C consisting of objects which are direct summands
of coproducts (resp., finite coproducts) of copies of M . Then AddM (resp., add M)
is an additive category.

Proposition 2.7 (Compact Object). For an object C of an additive category C,
the following are equivalent.

1. For any morphism f : C →
∐

i∈I Xi, there exists a factorization

C
f ′

−→
∐
j∈F

Xj
µF−−→

∐
i∈I

Xi

where F is a finite subset of I and µF is the canonical inclusion.
2. For any morphism f : C →

∐
i∈I Xi, there exists a finite subset F of I such

that f =
∑

j∈F ujpjf where uj are the structural morphisms and pj are the
canonical projections.

3. The functor hC : C → Ab preserves coproducts.
An object C ∈ C is called a compact object (often called a small object) of C if C

satisfies the above conditions.

Exercise 2.8. Show that if a right A-module C is finitely generated, then C is a
compact object in ModA.

Corollary 2.9. Let C be a compact object of an additive category C, and B =
EndC(C). The following hold.

1. For any object X ∈ C,we have isomorphisms

HomC(C(I),X) ∼→ HomB(HomC(C, C(I)),HomC(C,X))
∼→ HomB(HomC(C, C)(I),HomC(C,X))

if a coproduct C(I) exists for a set I.
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2. we have isomorphisms

HomC(C(I), C(J)) ∼→ HomB(HomC(C, C(I)),HomC(C,C(J)))
∼→ HomB(HomC(C, C)(I),HomC(C,C)(J))

if coproducts C(I), C(J) exist for sets I, J.

Proposition 2.10. Let C be an additive category, C ′ a preadditive category and
F : C → C′ a functor. If F preserves finite coproducts, then F is an additive
functor.

Definition 2.11 (Special Morphisms). Let C be a preadditive category. For f :
X → Y , g : X → Z and h : W → Y , we define the following.

1. (Cok f, cok f) = colim (X
f−→ Y,X

0−→ Y ).

2. (Ker f,ker f) = lim (X f−→ Y,X
0−→ Y ).

3. (Im f, im f) = Ker(Y 0−→ Cok f, cok f).
4. (Coimf, imf) = Cok(Ker f

0−→ X, ker f).

5. PushOut(f, g) = colim (X f−→ Y, X
g−→ Z).

6. PullBack(f, h) = lim (X
f−→ Y, W

h−→ Y ).

Proposition 2.12. Let C be a preadditive category and let f : X → Y be a mor-
phism in C such that there exist Ker f , Cok f , Coim f and Im f in C. Then there
exists a unique morphism f : Coim f → Im f such that we have the following com-
mutative diagram

X
f−−−−→ Y

coimf

� 	imf

Coim f
f−−−−→ Imf

Definition 2.13 (Abelian Category). An additive category C is called an abelian
category provided that

1. For any morphism f , there exist Ker f and Cok f in C.
2. For any morphism f , the above morphism f is an isomorphism.

Definition 2.14. In an abelian category C, we consider the following sequence

. . . → Xi−1 fi−1

−−−→ Xi fi

−→ Xi+1 → . . . .

We say that the above sequence is exact at Xi if Ker f i = Imf i−1. If the above
sequence is exact at each Xi, then we say that the above sequence is exact.

In the rest of this section, we deal with internal properties of an abelian category
C.

Proposition 2.15 (Snake Lemma). Suppose that the following diagram is commu-
tative

X
f−−−−→ Y

g−−−−→ Z −−−−→ O

x

� �y

�z

O −−−−→ X ′ f ′

−−−−→ Y ′ g′

−−−−→ Z′
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where all rows are exact. Then we have the following induced exact sequence

Kerx → Ker y → Ker z → Cok x → Cok y → Cok z.

Moreover, f (resp., g′) is monic (resp., epic) if and only if so is Kerx → Ker y
(resp., Cok y → Cok z).

Proposition 2.16 (Five Lemma). Suppose that the following diagram is commu-
tative

X1 −−−−→ X2 −−−−→ X3 −−−−→ X4 −−−−→ X5�f1

�f2

�f3

�f4

�f5

X1 −−−−→ X2 −−−−→ X3 −−−−→ X4 −−−−→ X5

where all rows are exact. Then the following hold.
1. If f1 is epic, and f2, f4 are monic, then f3 is monic.
2. If f5 is monic, and f2, f4 are epic, then f3 is epic.
3. If f1 is epic, f5 is monic, and f2, f4 are isomorphisms, then f3 is an isomor-

phism.

Proposition 2.17 (Pull Back 1). Suppose that the following diagram is commuta-
tive

X

(A)x

��

f �� Y

y

��
X′ f ′

�� Y ′

Then the following hold.

1. The square (A) is pull back if and only if O → X
[ f
x ]

−−→ Y⊕X ′ [−y f ′ ]−−−−−→ Y ′ is
exact.

2. The square (A) is push out if and only if X
[ f
x ]

−−→ Y⊕X ′ [−y f ′ ]−−−−−→ Y ′ → O is
exact.

Proposition 2.18 (Pull Back 2). Suppose that the following diagram is commuta-
tive

X

(A)

��

�� Y

(B)

��

�� Z

��
X ′ �� Y ′ �� Z′

If the squares (A) and (B) are push out (resp., pull back), then so is the square
(A) + (B).

Proposition 2.19 (Pull Back 3). Suppose that the following diagram is pull back
(resp., push out)

X

x

��

f �� Y

y

��
X′ f ′

�� Y ′

Then the following hold.
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1. If f ′ (resp., f) is epic (resp., monic), then the above diagram is also push out
(resp., pull back), and f (resp., f ′) is also epic (resp., monic).

2. The induced morphism Ker f → Ker f ′ is an isomorphism (resp., an epimor-
phism).

3. The induced morphism Cok f → Cok f ′ is a monomorphism (resp., an iso-
morphism).

Proposition 2.20 (Exact Sequence 1). Suppose that the following diagram is com-
mutative

O −−−−→ X −−−−→ Y −−−−→ Z −−−−→ O� � ∥∥∥
O −−−−→ X′ −−−−→ Y ′ −−−−→ Z −−−−→ O

where all rows are exact. Then the square

X

EX

��

�� Y

��
X ′ �� Y ′

is pull back and push out (this is called an exact square).

Proposition 2.21 (Exact Sequence 2). Suppose that the following diagram is com-
mutative

O −−−−→ X
f−−−−→ Y

g−−−−→ Z −−−−→ O�x

�y

∥∥∥
O −−−−→ X′ f ′

−−−−→ Y ′ g′

−−−−→ Z −−−−→ O

where all rows are exact. Then we have the following commutative diagram

O −−−−→ X
α−−−−→ Y ⊕X ′ β−−−−→ Y ′ −−−−→ O∥∥∥ �γ

�g′

O −−−−→ X
f−−−−→ Y

−g−−−−→ Z −−−−→ O

where α = [ f
x ], β = [−y f ′ ], γ = [ 1 0 ], where all rows are exact.

Proposition 2.22 (Exact Sequence 3). Suppose that the following diagram is com-
mutative

X1
�� ��

��

Y1
�� ��

��

Z1

��

X2

��
���
�� ��

��

Y2
�� ��

��
���

��

Z2

��
���

��

X3
�� �� Y3

�� �� Z3

X4
�� ��

��
���

Y4
�� ��

��
���

Z4

��
���
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where all rows are short exact sequences. If two of squares
X1 −−−−→ X2� �
X3 −−−−→ X4

Y1 −−−−→ Y2� �
Y3 −−−−→ Y4

Z1 −−−−→ Z2� �
Z3 −−−−→ Z4

are exact, then the rest is also exact.

Hint. Consider the following commutative diagram
O −−−−→ X1 −−−−→ Y1 −−−−→ Z1 −−−−→ O� � �
O −−−−→ X1⊕X2 −−−−→ Y3⊕Y2 −−−−→ Z2⊕Z1 −−−−→ O� � �
O −−−−→ X2 −−−−→ Y4 −−−−→ Z2 −−−−→ O.

Exercise 2.23. The following hold.

1. For a sequence X
f−→ Y

g−→ Z, if for any M ∈ A,

0 → HomA(Z,M)
HomA(g,M)−−−−−−−−→ HomA(Y, M)

HomA(f,M)−−−−−−−−→ HomA(X,M) → 0

is exact, then

O → X
f−→ Y

g−→ Z → O

is split exact.
2. For a sequence X

f−→ Y
g−→ Z, if for any M ∈ A,

0 → HomA(M,X)
HomA(M,f)−−−−−−−−→ HomA(M,Y )

HomA(M,g)−−−−−−−−→ HomA(M,Z) → 0

is exact, then

O → X
f−→ Y

g−→ Z → O

is split exact.

Definition 2.24 (Abn Categories). We define the conditions of an abelian cate-
gory C.

(Ab3) We say that an abelian category C satisfies the condition Ab3 (resp., Ab3*)
if C has coproducts (resp., products) of objects indexed by arbitrary sets.

(Ab4) We say that an abelian category C satisfies the condition Ab4 (resp., Ab4*)
provided that C satisfies the condition Ab3 (resp., Ab3*), and that the co-
product (resp., product) of monics (resp., epics) is monic (resp., epic).

(Ab5) We say that an abelian category C satisfies the condition Ab5 (resp., Ab5*)
provided that C satisfies the condition Ab3 (resp., Ab3*), and that the filtered
colimit (resp., filtered limit) of exact sequences is exact.

Proposition 2.25. The following hold.
1. In a category satisfying Ab3* and Ab5, any

∐
→

∏
is monic.

2. Ab5 ⇒ Ab4.
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3. An abelian category C satisfies the condition Ab5 if and only if C satisfies the
condition Ab3, and for a collection {Xi} of subobjects of an object X, we have∑

i
(Xi ∩X ′) = (

∑
i
Xi) ∩ X′

for any subobject X ′ of X.

Example 2.26. For a ring A, ModA satisfies the conditions Ab4*, Ab5.

3. Krull-Schmidt Categories

Let R be a ring with unity and let J(R) be the Jacobson radical of R. We
call R a semiperfect ring if (i) R/ J(R) is a semi-simple Artinian ring, and (ii) any
idempotent of R/J(R) can be lifted to an idempotent of R.

Lemma 3.1 (Semiperfect Rings 1). The following hold.
1. A ring R is semiperfect if and only if R has a complete set of orthogonal

primitive idempotents ei (1 ≤ i ≤ n) such that each eiRei is a local ring.
2. A ring R is semiperfect if and only if every finitely generated R-module has a

projective cover.

Lemma 3.2 (Semiperfect Rings 2). Let R be a semiperfect ring and let ei (1 ≤
i ≤ n) be a complete set of orthogonal primitive idempotents.

1. If fi (1 ≤ i ≤ m) is another complete set of orthogonal primitive idempotents,
then m = n and there is a permutation π such that Rfi

∼= Reπ(i) for all i.
2. If f is an idempotent of R, then there are a permutation π and an integer t

(1 ≤ t ≤ n) such that Rf ∼=
⊕t

i=1Reπ(i) and R(1 − f) ∼=
⊕n

i=t+1Reπ(i).
3. If I is a two-sided ideal of R, then R/I is also semiperfect.

Proposition 3.3. Let C be an additive category, and let X ∈ C, B = EndC(X). If
X ′ is a direct summand of a finite coproduct of copies of X, we have

HomC(X ′, Y ) ∼→ HomB(HomC(X, X ′), HomC(X, Y )) (f �→ HomC(X,f))

for all Y ∈ C.

Proof. There are qi : X′ → X and pi : X → X ′ (1 ≤ i ≤ n) such that
∑n

i=1piqi =
1X ′ . Let φ ∈ HomB(HomC(X,X ′),HomC(X,Y )), for any g ∈ HomC(X, X′), we
have

φ(g) = φ
(∑n

i=1
piqig

)
=

∑n

i=1
φ(pi)qig

= HomC

(
X,

∑n

i=1
φ(pi)qi

)
(g).

Then HomC(X,−) is surjective. Let f ∈ HomC(X ′, Y ) such that HomC(X, f) = 0.
Then fpi = 0 for all i, and hence f = f

∑n
i=1piqi =

∑n
i=1fpiqi = 0.

Definition 3.4. Let C be an additive category. An object X of C is called inde-
composable if X ∼= X1 ⊕X2 implies X1 = O or X2 = O.

Definition 3.5 (Pre-Krull-Schmidt Category). An additive category C is called a
pre-Krull-Schmidt category provided that EndC(X) is a semiperfect ring for each
X ∈ C.
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Proposition 3.6. Let C be a pre-Krull-Schmidt category. For any X ∈ C, there
are indecomposable objects Xi (1 ≤ i ≤ n) such that

X ∼=
⊕n

i=1
Xi.

Proof. Given X ∈ C, since EndC(X) is a semiperfect ring, there is a natural number
nX such that EndC(X) has a complete set of orthogonal primitive idempotents
ei (1 ≤ i ≤ nX). If X is not indecomposable, then we have a decomposition
X = X1⊕X2 with Xi �= O (i = 1, 2). By Lemma 3.2,2, Proposition 3.3, we have
nXi < nX (i = 1, 2). We get the statement by induction on nX.

Proposition 3.7. Let C be a pre-Krull-Schmidt category. Then the following are
equivalent.

1. For any object X ∈ C, X is indecomposable if and only if EndC(X) is a local
ring.

2. For any object X ∈ C, for any e2 = e ∈ EndC(X) there exist Y ∈ C and
q : Y → X, p : X → Y such that qp = e and pq = 1Y (i.e. any idempotent of
EndC(X) splits).

Proof. 1 ⇒ 2. For any object X ∈ C, by Proposition 3.6, we have X ∼=
⊕n

i=1Xi,
where Xi are indecomposable objects (1 ≤ i ≤ n). Then the compositions of natural
morphisms X → Xi → X form a complete set of orthogonal primitive idempotents
of EndC(X). By Lemma 3.2, 2, we get the statement 2.

2 ⇒ 1. Since EndC(X) is semiperfect, it is trivial.

Definition 3.8 (Krull-Schmidt Category). We call a pre-Krull-Schmidt category
C a Krull-Schmidt category if C satisfies the equivalent conditions of Proposition
3.7.

Theorem 3.9 (Krull-Schmidt Theorem). Let C be a Krull-Schmidt category. For
any X ∈ C, X is isomorphic to

⊕n
i=1Xi, where Xi are indecomposable objects.

Moreover, this decomposition is unique up to isomorphism (this is called a K-S
decomposition).

Proof. By Propositions 3.6, 3.7, X ∈ C has a K-S decomposition
⊕n

i=1Xi. Lemma
3.2 and Proposition 3.3 imply uniqueness of this decomposition.

Example 3.10. We denote by mod A the category of finitely presented right A-
modules. Let R be a commutative complete local ring, A a finite R-algebra. Then
mod A is a Krull-Schmidt category.

Definition 3.11 (Stable Category). Let C be an additive category, I an additive
full subcategory of C. For X, Y ∈ C, let I(X,Y ) be the subgroup of HomC(X,Y )
generated by morphisms which factor through some object of I. We define the
category CI as follows.

1. ObCI = ObC.
2. HomCI(X,Y ) = HomC(X,Y )/I(X, Y ).

This category is called the stable category of C by I.

Remark 3.12. For X ∈ C, If X is a direct summand of some object of I, then
X ∼= O in CI.

Theorem 3.13. Let C be an additive category, I an additive full subcategory of C.
If C is a Krull-Schmidt category, then so is CI .
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Proof. By Proposition 2.3, CI is clearly an additive category. For an indecom-
posable object X ∈ CI , we have a K-S-decomposition X =

⊕n
i=1Xi in C. Let

ei : X
pi−→ Xi

qi−→ X be the canonical morphism in C (1 ≤ i ≤ n), and ei be the
image of ei in ∈ CI. If the number of ei such that ei �= 0 is greater than 1, then
by Lemma 3.2 this contradicts indecomposability of X. Thus we may assume that
e1 �= 0 and ei = 0 for i ≥ 2, and then qipi factors through Vi ∈ I for i ≥ 2. Then Xi

is a direct summand of Vi. Therefore, by Lemma 3.2,3, EndCI(X) ∼= EndCI(X1) is
a local ring. We complete the proof by Proposition 3.7.

Example 3.14. Let R be a commutative complete local ring, A a finite R-algebra,
and projA the full subcategory of mod A consisting of finitely generated projective
right A-modules. Then the stable category modA of modA by projA is a Krull-
Schmidt category.
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4. Triangulated Categories

Throughout this section, unless otherwise stated, functors are covariant functors.

Definition 4.1. A triangulated category C is an additive category together with
(1) an auto-equivalence T : C ∼→ C, called the translation, and (2) a collection T of
sextuples (X,Y,Z, u, v,w), called triangle (distinguished triangle) . These data are
subject to the following four axioms:

(TR1) (1) Every sextuple (X,Y,Z, u, v, w) which is isomorphic to a triangle is a
triangle.
(2) Every morphism u : X → Y is embedded in a triangle (X,Y,Z, u, v,w).
(3) The triangle (X, X,O, 1X, 0, 0) is a triangle for all X ∈ C.

(TR2) A triangle (X,Y, Z,u, v, w) is a triangle if and only if (Y,Z, TX, v, w,−Tu) is
a triangle.

(TR3) For any triangles (X, Y, Z,u, v,w), (X′, Y ′, Z′, u′, v′, w′) and morphisms f :
X → X ′, g : Y → Y ′ with gu = u′f , there exists h : Z → Z′ such that
(f, g, h) is a homomorphism of triangles.

(TR4) (Octahedral axiom) For any two consecutive morphisms u : X → Y and v :
Y → Z, if we embed u, vu and v in triangles (X,Y,Z′, u, i, i′), (X, Z,Y ′, vu, k,
k′) and (Y, Z,X ′, v, j, j′), respectively, then there exist morphisms f : Z′ →
Y ′, g : Y ′ → X ′ such that the following diagram commute

X
u−−−−→ Y

i−−−−→ Z′ i′−−−−→ TX∥∥∥ �v

�f

∥∥∥
X

vu−−−−→ Z
k−−−−→ Y ′ k′

−−−−→ TX�j

�g

�T u

X ′ X′ j′

−−−−→ TY�j′
�(Ti)j′

TY
Ti−−−−→ TZ′

and the third column is a triangle.
Sometimes, we write X[i] for T i(X).

Definition 4.2 (∂-functor). Let C, C′ be triangulated categories. An additive func-
tor F : C → C′ is called ∂-functor (sometimes exact functor) provided that there is a
functorial isomorphism α : FTC

∼→ TC′F such that (FX,FY, FZ, F (u), F (v), αXF (w))

is a triangle in C′ whenever (X, Y, Z,u, v,w)is a triangle in C. Moreover, if a ∂-
functor F is an equivalence, then we say that C is triangle equivalent to C ′, and

denote by C
t∼= C ′

For (F, α), (G,β) : C → C′ ∂-functors, a functorial morphism φ : F → G is called
a ∂-functorial morphism if (TC′φ)α = βφTC.

We denote by ∂(C,C ′) the collection of all ∂-functors from C to C′, and denote
by ∂ Mor(F, G) the collection of ∂-functorial morphisms from F to G.

Definition 4.3. Given a triangulated category C with a translation TC, we define
the opposite triangulated category Cop the following

1. TCop (Xop) = T−1
C (X).
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2. Xop → Y op → Zop → TCop Xop is a distinguished triangle if T−1
C X → Z →

Y → X is a distinguished triangle in C.

Definition 4.4. A covariant additive functor H : C → C′ from a triangulated cate-
gory to an abelian category is called a covariant cohomological functor, if whenever
(X, Y, Z, u, v, w) is a triangle in C, the long sequence

. . . → H(T i(X))
H(T i(u))−−−−−−→ H(T i(Y ))

H(T i(v))−−−−−−→ H(T i(Z))
H(T i(w))−−−−−−→ H(T i+1(X)) → . . .

is exact. If H is a cohomological functor, then we often write Hi(X) for H(T i(X)),
i ∈ Z. One defines a contravariant cohomological functor by reversing the arrows.

In this section, we deal with internal properties of a triangulated category C.

Proposition 4.5. The following hold.
1. If (X, Y, Z,u, v,w) is a triangle, then vu = 0, wv = 0 and T (u)w = 0.
2. For any W ∈ C, HomC(W,−) : C → Ab (resp., HomC(−, W ) : C → Ab) is a

covariant (resp., contravariant) cohomological functor.
3. For any homomorphism of triangles (f, g, h) : (X, Y, Z,u, v,w)

→ (X ′, Y ′, Z′, u′, v′, w′), if two of f , g and h are isomorphisms, then the rest
is also an isomorphism.

Proof. 1. According to (TR2), it suffices to show vu = 0. By (TR2) and (TR3) we
have a commutative diagram

X
1X−−−−→ X −−−−→ O −−−−→ TX∥∥∥ �u

� ∥∥∥
X

u−−−−→ Y
v−−−−→ Z

w−−−−→ TX.

2. Let (X, Y, Z,u, v, w) be a triangle. Then, since by 1, vu = 0, we have
HomC(W,v) ◦ HomC(W, u) = 0. Conversely, let g ∈ HomC(W, Y ) such that
HomC(W,v)(g) = vg = 0. Then by (TR3) there exists f ∈ HomC(W,Y ) which
makes the following diagram commutes

W
1W−−−−→ W −−−−→ O −−−−→ TW

f

� �g

� �Tf

X
u−−−−→ Y

v−−−−→ Z
w−−−−→ TX.

Thus g = HomC(W,u)(f) and the sequence HomC(W,X) → HomC(W, Y ) →
HomC(W,Z) is exact. It follows by (TR2) that HomC(W,−) is a cohomological
functor.

3. According to (TR2), it is enough to deal with the case that f , g are isomor-
phisms. By 2 we have a commutative diagram with exact rows

HomC(TY ′,−) →HomC(TX′,−) →HomC(Z ′,−) →HomC(Y ′,−) →HomC(X ′,−)
↓ HomC(Tg,−) ↓ HomC(Tf,−) ↓ HomC(h,−) ↓ HomC(g,−) ↓ HomC(f,−)

HomC(TY,−) →HomC(TX,−) → HomC(Z,−) →HomC(Y,−) → HomC(X,−).

Thus, since by 5 lemma HomC(h,−) is an isomorphism, it follows by Yoneda lemma
that h is an isomorphism.

Proposition 4.6. Let F : C → C′ be a ∂-functor between triangulated categories.
If G : C′ → C is a right (resp., left) adjoint of F , then G is also a ∂-functor.
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Proof. For X ∈ C′, we have a functorial isomorphisms

HomC(−,GTX) ∼= HomC′(F−, TX)
∼= HomC′(T−1F−,X)
∼= HomC′(FT−1−,X)
∼= HomC(T−1−,GX )
∼= HomC(−, TGX).

Then we have a functorial isomorphism β : GTC′
∼→ TCG. For a triangle (X,Y,Z, u,

v,w) of C′, let (GX,GY, Z′,Gu, v′, w′) be a triangle of C. Since there is a morphism
of triangles

FGX

��

�� FGY

��

�� FZ′

��

�� FTGX

��

αG �� TFGX

������������

X �� Y �� Z �� TX.

Then we have a commutative diagram

GX �� GY �� Z ′

��

�� TGX

β−1

�� �����������

GX �� GY �� GZ �� GTX
β �� TGX.

Since HomC(M,G−) ∼= HomC′(FM,−), (GX, GY,GZ,Gu,Gv,Gw) induces a long
exact sequence. We apply HomC(M,−) to the above diagram, then by 5 lemma,
we have an isomorphism from (GX,GY, Z′,Gu, v′, w′) to (GX,GY,GZ,Gu, Gv,
βXGw).

Proposition 4.7. The following hold.
1. If

∐
i∈IXi (resp.,

∏
i∈IXi) exists in C for {Xi}i∈I , then there is an isomor-

phism

α :
∐

i∈I
TXi

∼→ T
∐

i∈I
Xi

(resp., β :
∏

i∈I
TXi

∼→ T
∏

i∈I
Xi).

2. For a collection of triangles (Xi, Yi, Zi, ui, vi, wi) (i ∈ I), if
∐

i∈IXi,
∐

i∈IYi,∐
i∈IYi (resp.,

∏
i∈IXi,

∏
i∈IYi,

∏
i∈IYi) exist in C, then

(
∐

i∈I
Xi,

∐
i∈I

Yi,
∐

i∈I
Zi,

∐
i∈I

ui,
∐

i∈I
vi, α

∐
i∈I

wi)

(resp., (
∏

i∈I
Xi,

∏
i∈I

Yi,
∏

i∈I
Zi,

∏
i∈I

ui,
∏

i∈I
vi, β

∏
i∈I

wi))

is a triangle.

Proof. 1. We have isomorphisms

HomC(T
∐

i∈I
Xi,−) ∼= HomC(

∐
i∈I

Xi, T
−1−)

∼=
∏

i∈I
HomC(Xi, T

−1−)

∼=
∏

i∈I
HomC(TXi,−)

∼= HomC(
∐

i∈I
TXi,−).
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2. Let (
∐

i∈IXi,
∐

i∈IYi, Z′,
∐

i∈Iui, v, w) be a triangle. Then we have a com-
mutative diagram

∐
i∈IXi

i∈Iui−−−−−→
∐

i∈IYi
i∈Ivi−−−−→

∐
i∈IZi

α i∈Ivi−−−−−→ T
∐

i∈IXi∥∥∥ ∥∥∥ � ∥∥∥
∐

i∈IXi
i∈Iui−−−−−→

∐
i∈IYi

v−−−−→ Z ′ w−−−−→ T
∐

i∈IXi.

Applying HomC(M,−) to the above, by 5 lemma, we complete the proof.

Proposition 4.8. The following hold.

1. A triangle (X,Y, Z,u, v, 0) is isomorphic to (X,Z⊕X, Z, [ 0
1 ] , [ 1 0 ] , 0).

2. For a morphism of triangles

X
u−−−−→ Y

v−−−−→ Z
w−−−−→ TX∥∥∥ f

� �g

∥∥∥
X′ u′

−−−−→ Y ′ v′
−−−−→ Z′ w′

−−−−→ TX

there exists g′ : Z → Z′ such that

Y
[ v
f ]

−−→ Z⊕Y ′ [−g′ v′ ]−−−−−→ Z′ (Tu)w′

−−−−→ TY

is a triangle.

Proof. 1. Since HomC(Z,Z) 0−→ HomC(Z, TX), by Proposition 4.5, there is s : Z →
Y such that vs = 1Z . Then we have a commutative diagram

X
µ−−−−→ Z⊕X

π−−−−→ Z
0−−−−→ TX∥∥∥ α

� ∥∥∥ ∥∥∥
X

u−−−−→ Y
v−−−−→ Z

0−−−−→ TX

where µ = [ 0
1 ], π = [ 1 0 ], α = [ s u ].

2. Since T−1Z ′ −T−1w′
−−−−−→ X

u′
−→ Y ′ v′

−→ Z′ is triangle, we have a commutative
diagram

T−1Z′ −T−1w′
−−−−−→ X

u′
−−−−→ Y ′ v′

−−−−→ Z ′∥∥∥ �u

�x

∥∥∥
T−1Z′ −uT −1w′

−−−−−−→ Y
α−−−−→ M

β−−−−→ Z ′�v

�y

�−w′

Z Z
w−−−−→ TX�w

�0

TX
T u′

−−−−→ TY ′



18 JUN-ICHI MIYACHI

By 1, Y ′ x−→ M
y−→ Z

0−→ TY ′ is isomorphic to Y ′ µ−→ Z⊕Y ′ π−→ Z
0−→ TY ′. Then we

have a commutative diagram

T−1Z ′ −T−1w′
−−−−−→ X

u′
−−−−→ Y ′ v′

−−−−→ Z′∥∥∥ �u

�µ

∥∥∥
T−1Z ′ −uT−1w′

−−−−−−→ Y
α−−−−→ Z⊕Y ′ β−−−−→ Z′�v

�π

�−w′

Z Z
w−−−−→ TX�w

�0

TX
Tu′

−−−−→ TY ′

where µ = [ 0
1 ], π = [ 1 0 ], α =

[ v
f ′

]
, β = [−g′′ v′ ], and v′f ′ = g′′v, f ′u = u′,

w = w′g′. Since (f ′ − f)u = 0, there is h : Z → Y ′ such that f ′ = f + hv. Hence
we have a commutative diagram

Y
α′

−−−−→ Z⊕Y ′ β′

−−−−→ Z
(Tu)w′

−−−−→ TY∥∥∥ φ

� ∥∥∥ ∥∥∥
Y

α−−−−→ Z⊕Y ′ β−−−−→ Z
(Tu)w′

−−−−→ TY

where α′ = [ v
f ], β′ = [ −g′ v′ ], φ = [ 1 0

h 1 ].

Proposition 4.9 (9 Lemma). Any commutative diagram in C

X ′ u′
−−−−→ Y ′

x′
� �y′

X
u−−−−→ Y

can be embedded in a diagram

X′

x′

��

u′
��Y ′

y′

��

v′
��Z′

z′

��

w′
��TX ′

Tx′

��
X

x

��

u ��Y

y

��

v ��Z

z

��

w ��TX

Tx

��
X ′′

x′′

��

u′′
��Y ′′

y′′

��

v′′
��Z′′

−z′′

��

w′′
��TX ′′

−Tx′′

��
TX′ T u′

��TY ′ Tv′
��TZ′ −Tw′

��T 2X ′

.

which is commutative without the right and bottom corner, - anti-commutative,
where all rows and columns are triangles.
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Proof. According to (TR4), we have three commutative diagrams

X ′ u′
��Y ′

y′

��

v′
��Z ′

γ

��

w′
��TX ′

X ′ y′u′
��Y

y

��

α ��A

δ

��

β ��TX ′

Tu′

��
Y ′′

y′′

��

Y ′′

(Tv′)y′′

��

y′′
��TY ′

TY ′ Tv′
��TZ′

X ′ x′
��X

u

��

x ��X ′′

ε

��

x′′
��TX ′

X ′ ux′
��Y

v

��

α ��A

η

��

β ��TX ′

Tx′

��
Z

w

��

Z

(Tx)w

��

w ��TX

TX
Tx ��TX ′′

X′′ ε ��A

δ

��

η ��Z

z

��

(Tx)w ��TX ′′

X′′ u′′
��Y ′′

(T v′)y′′

��

v′′
��Z′′

z′′

��

w′′
��TX

Tε

��
TZ′

−T γ

��

TZ ′

−Tz′′

��

−Tγ ��TA

TA
Tη ��TZ

In particular, we have u′′ = δε, v = ηα, y = δα, z′ = ηγ, zη = v′′δ and (Tx′′)w′′ =
(Tβ)(Tε)w′′ = −(Tβ)(Tγ)z′′ = −(Tw′)z′. Then it is easy to get the diagram.

5. Frobenius Categories

Definition 5.1 (Exact Category). Let C be an additive category which is embed-
ded as a full subcategory of an abelian category A, and suppose that C is closed
under extensions in A. Let S be a collection of exact sequences in A

O → X
u−→ Y

v−→ Z → O.

u is called an admissible monomorphism, and v is called an admissible epimorphism.
A pair (C,S) is called an exact category in the sense of Quillen provided that

(EX1) Any split sequence of which all terms are in C is in S.
(EX2) The composition of admissible monomorphisms (resp., epimorphisms) is also

an admissible monomorphism (resp., epimorphism).
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(EX3) Given the following commutative diagram in A
O −−−−→ X −−−−→ Y −−−−→ Z −−−−→ O� � ∥∥∥
O −−−−→ X′ −−−−→ Y ′ −−−−→ Z −−−−→ O

where all rows are exact, if the top row is in S and X ′ ∈ C, then the bottom
row is in S.

(EX4) Given the following commutative diagram in A
O −−−−→ X −−−−→ Y ′ −−−−→ Z ′ −−−−→ O∥∥∥ � �
O −−−−→ X −−−−→ Y −−−−→ Z −−−−→ O

where all rows are exact, if the bottom row is in S and Z ′ ∈ C, then the top
row is in S.

An object X in C is called S-projective (resp., S-injective) if for any admissible
epimorphisms (resp., monomorphisms) v : Y → Z, HomC(X, v) (resp., HomC(v, X))
is surjective.

Definition 5.2 (Frobenius Category). An exact category (C,S) is called a Frobe-
nius category if (C,S) has enough S-projectives and enough S-injectives and if
S-projectives coincide with S-injectives.

Let Q be the full subcategory of C consisting of S-projective objects. A stable
category C is the category CQ.

Proposition 5.3. In a Frobenius category (C,S), we consider the following com-
mutative diagram

O −−−−→ X −−−−→ I −−−−→ X1 −−−−→ O

f

� � �f ′

O −−−−→ X′ −−−−→ I ′ −−−−→ X ′
1 −−−−→ O

where I, I ′ are S-injective, with all rows in S. Then the image f ′ is uniquely
determined by f in C.

Remark 5.4. For all X ∈ C we choose the elements O → X
µX−−→ I(X) πX−−→ TX →

O in S , with I(X) being S-injective. According to Proposition 5.3, an object TX is
uniquely determined up to isomorphism in C independently of choice of the above
sequence, but f ′ is depend on their choice. Then we can understand the induced
functor T : C → C only if we know O → X

µX−−→ I(X) πX−−→ TX → O in S for all
X ∈ C.

Proposition 5.5. T is an auto-equivalence of C.

Definition 5.6 (Triangle). In a Frobenius category (C,S), let u : X → Y be
an morphism in C. By taking M(u) = PushOut(u, µX), we have the following
commutative diagram in C

O −−−−→ X
µX−−−−→ I(X) πX−−−−→ TX −−−−→ O

u

� �x

∥∥∥
O −−−−→ Y

v−−−−→ M(u) w−−−−→ TX −−−−→ O
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with all rows in S. Then in C the sequence

X
u−→ Y

v−→ M(u)
w−→ TX

is called a standard triangle. Let T be a collection of sextuples which are isomorphic
to standard triangles in C.

Lemma 5.7. In a Frobenius category (C,S), let w : M(u) → TX be the morphism
in Definition 5.6. Consider the following commutative diagram in C

O −−−−→ X
−u′

−−−−→ Y ′ v′
−−−−→ M(u) −−−−→ O∥∥∥ x′

� �w

O −−−−→ X
µ−−−−→ I(X) π−−−−→ TX −−−−→ O

with all rows in S, then the sextuple X
u′

−→ Y ′ v′

−→ M(u)
w−→ TX is isomorphic to

the above triangle X
u−→ Y

v−→ M(u)
w−→ TX in C.

Proof. By Proposition 2.21, we have the following commutative diagram

O −−−−→ X
β−−−−→ I(X)⊕ Y

γ−−−−→ M(u) −−−−→ O∥∥∥ �δ

�w

O −−−−→ X
µ−−−−→ I(X) −π−−−−→ TX −−−−→ O

where β = [ µ
u ], γ = [−x v ], δ = [ 1 0 ], with all rows in S. Since the right and bottom

rectangle in the previous diagram is pull back, there exists η : Y ′ → I(X)⊕Y such
that we have the following commutative diagram in C

X
u′

−−−−→ Y ′ v′

−−−−→ M(u)
w−−−−→ TX∥∥∥ �η

∥∥∥ ∥∥∥
X

β
−−−−→ I(X)⊕ Y

γ
−−−−→ M(u)

w−−−−→ TX∥∥∥ �ε

∥∥∥ ∥∥∥
X

u−−−−→ Y
v−−−−→ M(u)

w−−−−→ TX

where ε = [ 0 1 ], all vertical arrows are isomorphisms in C.

Proposition 5.8. In a Frobenius category (C,S), the image of any element O →
X

u−→ Y
v−→ Z → O of S can be embedded in a triangle X

u−→ Y
v−→ Z

w−→ TX in C.

Proof. Since I(X) is S-injective and O → X
−u−−→ Y

v−→ Z → O ∈ S, we have a
commutative diagram

O −−−−→ X
−u−−−−→ Y

v−−−−→ Z −−−−→ O∥∥∥ � �w

O −−−−→ X
µ−−−−→ I(X) π−−−−→ TX −−−−→ O.

By Lemma 5.7, we get the statement.

Theorem 5.9. Let (C ,S) be a Frobenius category. Then (C ,T ) is a triangulated
category.
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Proof. we show that (C ,S) satisfies the axioms of a triangulated category.
(TR1) It is trivial .
(TR2) Let (X,Y,Z, u, v, w) be a standard triangle. Then we have a commutative

diagram

O −−−−→ X
µX−−−−→ I(X) πX−−−−→ TX −−−−→ O�u

�x

∥∥∥
O −−−−→ Y

v−−−−→ Z
w−−−−→ TX −−−−→ O�µY

�α

∥∥∥
O −−−−→ I(Y )

β−−−−→ I(Y )⊕TX
γ−−−−→ TX −−−−→ O�πY

�δ

TY TY

where α = [ s
w ], β = [ 1

0 ], γ = [ 0 1 ], δ = [ πY u′ ], πY s+u′w = 0, and with all rows in
S . Since sxµX = [ 1 0 ]αxµX = [ 1 0 ]βµY u = µY u, we have a commutative diagram

O −−−−→ X
µX−−−−→ I(X) πX−−−−→ TX −−−−→ O�u

�sx

�−u′

O −−−−→ Y
µY−−−−→ I(Y ) πY−−−−→ TY −−−−→ O.

Then we have u′ = −Tu, and we have a commutative diagram in C

Y
v−−−−→ Z

w−−−−→ TX
u′

−−−−→ TY∥∥∥ ∥∥∥ �ε

∥∥∥
Y

v−−−−→ Z
α−−−−→ I(Y )⊕TX

δ−−−−→ TY

where ε = [ 0
1 ] is an isomorphism in C. Hence a sextuple (Y, Z,TX, v,w,−Tu) is a

triangle . The reverse implication is similar by Lemma 5.7.
(TR3) Let (Xi, Yi, Zi, ui, vi, wi), be standard triangles (i = 1, 2), and

O −−−−→ Xi

µXi−−−−→ I(Xi)
πXi−−−−→ TXi −−−−→ O

ui

� �xi

∥∥∥
O −−−−→ Yi

vi−−−−→ Zi
wi−−−−→ TXi −−−−→ O

commutative diagrams with all rows in S . Let f : X1 → X2, g : Y1 → Y2 be
morphisms satisfying u2f = gu1 in C. Since I(X1) is S-injective, there exists
t : I(X1) → Y2 such that gu1 − u2f = tµX1 . Since I(X2) is S-injective, we have a
commutative diagram

X1
µX1−−−−→ I(X1)

f

� �r

X2

µX2−−−−→ I(X2).
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Then we have equations
x2rµX1 = x2µX2f

= v2u2f

v2gu1 = v2u2f + v2tµX1

= (x2r + v2t)µX1

Since

X1

µX1−−−−→ I(X1)

u1

� �x1

Y1
v1−−−−→ Z1

is push out, there exists h : M(u1) → M(u2) such that v2g = hv1 and x2r + v2t =
hx1. Then there is f ′ : TX1 → TX2 such that f ′w1 = w2h. Since

f ′πX1 = f ′w1x1 = w2hx1 = w2(x2r + v2t) = w2x2r = πX2r

we have f ′ = Tf, and hence a morphism (f, g, h) from (X1, Y1, Z1, u1, v1, w1) to
(X2, Y2, Z2, u2, v2, w2).

(TR4) Let (X,Y,Z′, u, i, i′), (X,Z, Y ′, vu, k, k′) and (Y,Z,X ′, v, j, j′) be trian-
gles in C. We have a commutative diagram in C

O �� X

EXu

��

µX �� I(X)

x

��

πX �� TX �� O

O �� Y

EXv

��

i �� Z′

f

��

i′ �� TX �� O

O �� Z
k �� Y ′ k′

�� TX �� O

where all rows are in S. Since i is an admissible monomorphism, µ′
Y = µZ ′i is

also an admissible monomorphism and there is an admissible epimorphism π′
Y such

that πZ′ = (T ′i)π′
Y . Then we have a commutative diagram in C

X

EXu

��

µX �� I(X)

x

��

πX �� TX

T ′u

������
��

���

Y

EXv

��

i �� Z′

EXf

��

µZ′ �� I(Z ′)

z′

��

π′
Y �� T ′Y

T ′i �� TZ′

Z
k �� Y ′ g1 �� X′′

j′
1 �� T ′Y

T ′i �� TZ′

Therefore, we have a triangle in C

Z′ f
−→ Y ′ g1−→ X′ (T ′i)j′1−−−−→ TZ ′.

Since j′1g1fx = (T ′u)πX = (T ′u)k′fx and j′1g1k = 0 = (T ′u)k′k in C, and

X
u−−−−→ Y

v−−−−→ Z

µX

� �k

I(X) x−−−−→ Z ′ f−−−−→ Y ′
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is push out, we have j′1g1 = (T ′u)k′. Since I(Y ) and I(Z′) are S-injective, there
exist α : TY → T ′Y and β : X′ → X ′′ such that

Y �� �� I(Y ) �� ��

��

TY

��

Z
��

����
�� �� X′ �� ��

��
���

��

TY

����
����

��

Y �� �� I(Z′) �� �� T ′Y

Z �� ��
��

����
X′′ �� ��

��
���

T ′Y

���
���

is commutative in C, where α is an isomorphism in C. Then by Proposition 2.22, β is
an isomorphism in C, and Ti = (T ′i)α, Tu = α−1T ′u. Let g = β−1g1, j = β−1g1k,
j′ = α−1j′1β, then we have the octahedral diagram of Definition 4.1.

Example 5.10. Let A be a self-injective algebra over a field k, and O → Ω →
A⊗kA

µ−→ A → O an exact sequence, where µ is the multiplication map. Then
mod A is a Frobenius category, its stable category modA is a triangulated category
with a translation functor HomA(Ω,−).

6. Homotopy Categories

Throughout this section, A is an abelian category and B is an additive subcate-
gory of A which is closed under isomorphisms.

Definition 6.1 (Complex). Let B be an additive category. A complex (cochain
complex) is a collection X � = (Xn, dn

X : Xn → Xn+1
X )n∈Z of objects and morphisms

of B such that dn+1
X dn

X = 0. A complex X� = (Xn, dn
X : Xn → Xn+1

X )n∈Z is called
bounded below (resp., bounded above, bounded) if Xn = O for sufficiently small
(resp., large, large and small) n.

A complex X � = (Xn, dn
X) is called a stalk complex if there exists an integer n0

such that Xi = O if i �= n0. We identify objects of B with a stalk complexes of
degree 0.

A morphism f of complexes X � to Y � is a collection of morphisms fn : Xn → Y n

which commute with the maps of complexes

fn+1dn
X = dn

Y fn.

We denote by C(B) (resp., C+(B), C−(B), Cb(B)) the category of complexes
(resp., bounded below complexes, bounded above complexes, bounded complexes)
of B. An auto-equivalence T : C(B) → C(B) is called translation if (TX�)n = Xn+1

and (TdX)n = −dn+1
X for any complex X � = (Xn, dn

X).

Proposition 6.2. The following hold.

1. C∗(B) is an additive category, where ∗ = nothing, +,−, b. Moreover, if B has
products (resp., coproducts), then C(B) has also products (resp., coproducts).

2. C∗(A) is an abelian category, where ∗ = nothing, +,−, b. Moreover, if A
satisfies the condition Ab3* (resp., Ab3), then C(A) also satisfies the condition
Ab3* (resp., Ab3).
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Definition 6.3. For u ∈ HomC(B)(X�, Y �), the mapping cone of u is a complex
M�(u) with

Mn(u) = Xn+1⊕Y n,

dn
M�(u) =

[
−dn+1

X 0

un+1 dn
X

]
: Xn+1⊕Y n → Xn+2⊕Y n+1.

Moreover, for 1X ∈ HomC(B)(X�, X �), let I�(X�) = M�(1X).

Definition 6.4. Let SC∗(B) be the collection of exact sequences O → X � f−→ Y � g−→
Z � → O of complexes of C∗(B) such that

O → Xn fn

−→ Y n gn

−→ Zn → O

are split exact for all n ∈ Z, where ∗ = nothing, +,−, b. In this case, we call f
(resp., g) a term-split monomorphism (resp., a term-split epimorphism).

Proposition 6.5. For u ∈ HomC(B)(X �, Y �), we have an exact sequence in C(A)

O → Y � µu−→ M�(u) πu−→ TX � → O

where µu = [ 0
1 ], πu = [ 1 0 ]. Moreover, the above sequence belongs to SC(B).

Lemma 6.6. For X � ∈ C(B), we have

I �(X �) ∼= (Xn+1⊕Xn,
[

0 0
1Xn+1 0

]
: Xn+1⊕Xn → Xn+2⊕Xn+1).

Proof.

Xn+1⊕Xn
dn
M�(1X)−−−−−→ Xn+2⊕Xn+1

αn

� �αn+1

Xn+1⊕Xn δn

−−−−→ Xn+2⊕Xn+1

where αn =
[

1Xn+1 dn
X

0 1Xn

]
and δn =

[
0 0

1Xn+1 0

]
.

Lemma 6.7. The category (C(B),SC(B)) is an exact category.

Proposition 6.8. The category (C∗(B),SC∗(B)) is a Frobenius category, where ∗ =
nothing, +,−, b.

Proof. Let X� ∈ C(B), then by Lemma 6.6 we have

I�(X �) ∼=
⊕

n∈Z
I�(Xn)[−n].

where Xn is a stalk complex of degree 0 (Note that the above biproduct exists by Ex-
ercise 6.18). It is easy to see that I�(Xn)[−n] is SC(B)-projective and SC(B)-injective,
and then I�(X �) is SC(B)-projective and SC(B)-injective. For any SC(B)-injective
complex Y �, by Proposition 6.5, Y � is a direct summand of I�(Y �), and hence Y �

is SC(B)-projective. Similarly, any SC(B)-projective complex is SC(B)-injective. Ac-
cording to Proposition 6.5, it is easy to see that C(B) has enough SC(B)-injectives
and enough SC(B)-projectives.

Definition 6.9 (Homotopy Category). A homotopy category K∗(B) of B is the sta-
ble category of (C∗(B),SC∗(B)) by the full subcategory IC∗(B) of SC∗(B)-injective
objects, where ∗ = nothing, +,−, b.
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Remark 6.10. For u ∈ HomC(B)(X�, Y �), we have a commutative diagram

O −−−−→ X � µX−−−−→ I�(X �) πX−−−−→ TX � −−−−→ O

u

� �x

∥∥∥
O −−−−→ Y � µu−−−−→ M�(u) πu−−−−→ TX � −−−−→ O

where x = [ 1 0
0 u ], with all rows in SC(B). By the proof of Proposition 6.8, the

definition of M�(u) coincides with the one of Definition 5.6.

Proposition 6.11. A category K∗(B) is a triangulated category, where ∗ = noth-
ing, +,−, b.

Proposition 6.12. If an exact sequence O → X � u−→ Y � v−→ Z � → O in C∗(B)
belongs to SC∗(B), then it can be embedded in a triangle X � u−→ Y � v−→ Z � w−→ TX� in
K∗(B), where ∗ = nothing, +,−, b.

Proof. By Proposition 5.8.

Definition 6.13 (Homotopy Relation). Two morphisms f, g ∈ HomC(B)(X �, Y �)
is said to be homotopic (denote by f �

h
g) if there is a collection of morphisms

h = (hn), hn : Xn → Y n−1 such that

fn − gn = dn−1
Y hn + hn+1dn

X

for all n ∈ Z. For X�, Y � ∈ C∗(B), HtpC(B)(X �, Y �) is the subgroup of HomC(B)(X�,
Y �) consisting of morphisms which are homotopic to 0.

Proposition 6.14. For a morphism f ∈ HomC(B)(X�, Y �) (∗ = nothing, +,−, b),
the following are equivalent.

1. f ∈ HtpC(B)(X�, Y �).
2. f factors through X � µX−−→ I �(X�).
3. f factors through I �(T−1Y �)

πT−1Y−−−−→ Y �.
4. f ∈ IC(B)(X�, Y �).

In particular, HtpC(B)(X �, Y �) = IC(B)(X �, Y �).

Proof. 1 ⇔ 2. Let h = (hn) be a homotopy morphism f �
h

0, and let φ = (φn) :

X � → Y �, φn = [ hn+1 fn ]. Then for all n ∈ Z we have

φndn
M�(1X) = [ hn+1 fn ]

[
−dn

X 0

1Xn dn−1
X

]
= [−hn+1dn

X + fn fndn−1
X ]

= [dn
Y hn dn−1

Y fn−1]
= dn−1

Y φn−1,

φnµn
X = [ hn+1 fn ]

[
0

1Xn

]
= fn.

Conversely, let φ = (φn) : X� → Y � be a morphism such that f = φµX� . By the
same calculation in the above, there is a homotopy morphism h = (hn), hn : Xn →
Y n+1 such that

fn = dn−1
Y hn + hn+1dn

X

for all n ∈ Z. Thus f ∈ HtpC(B)(X �, Y �).
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2 ⇔ 4. Since I �(X �) is IC(B)-injective, 2 ⇒ 4 is trivial. Conversely, since µX� :
X � → I �(X �) is an admissible monomorphism, it is also trivial.

3 ⇔ 4. The same as 2 ⇔ 4.

Corollary 6.15. The canonical functor C(B) → K(B) preserves products and co-
products. In particular, we have

1. If B has products (resp., coproducts), then so has K(B).
2. If A satisfies the condition Ab3* (resp., Ab3), then K(A) has products (resp.,

coproducts) .

Proof. By Proposition 6.14, we have exact sequences for X�, Y � ∈ C(B)

HomC(B)(I �(X�), Y �) → HomC(B)(X�, Y �) → HomK(B)(X �, Y �) → 0,

HomC(B)(X �, I �(T−1Y �)) → HomC(B)(X�, Y �) → HomK(B)(X �, Y �) → 0.

Then it is easy.

Corollary 6.16. Let B′ be another additive category, and F : C(B) → C(B′) an
additive functor. If F satisfies the conditions

(a) there exists an functorial isomorphism α : FTC(B) → TC(B′)F ,
(b) for any morphism u : X � → Y � in C(B), we have a commutative diagram

FX � F u−−−−→ FY � Fµu−−−−→ F M�(u) αXF πu−−−−−→ TC(B′)FX �∥∥∥ ∥∥∥ s

� ∥∥∥
FX � F u−−−−→ FY � µF u−−−−→ M�(Fu) πF u−−−−→ TC(B′)FX�,

then F induces a ∂-functor F ′ : K(B) → K(B′).

Remark 6.17. By the proof of Proposition 6.14, X � belongs to IC(B) if and only if
X � is a direct summand of I�(X�). Hence it is easy to see that any object of IC(B)

is isomorphic to I �(Z�) for some Z � ∈ C(B).

Exercise 6.18 (Biproduct). Let n ≥ 0, and let X �
i : . . . → Xn−1

i → Xn
i be com-

plexes of C−(B) indexed by i ∈ N. Prove the following.

1.
∐

i∈N
T iX �

i
∼=

∏
i∈N

T iX�
i in C(B). Thus

⊕
i∈N

T iX �
i exists in C(B).

2.
∐

i∈N
T iX �

i
∼=

∏
i∈N

T iX�
i in K(B). Thus

⊕
i∈N

T iX �
i exists in K(B).

Let n ≥ 0, and let Y �
i : Y 0

i → Y 1
i → . . . → Y n

i be complexes of Cb(B) indexed by
i ∈ Z. Prove the following.

1.
∐

i∈Z
T iY �

i
∼=

∏
i∈Z

T iY �
i in C(B). Thus

⊕
i∈Z

T iY �
i exists in C(B).

2.
∐

i∈Z
T iY �

i
∼=

∏
i∈IT

iY �
i in K(B). Thus

⊕
i∈Z

T iY �
i exists in K(B).

Proposition 6.19. Let R be a commutative complete local ring, A a finite R-
algebra, and B is a Krull-Schmidt subcategory of modA. Then Kb(B) is also a
Krull-Schmidt category.

Proof. Let X� ∈ Cb(B). Since we may assume that X � = X0 → X1 → . . . → Xn,
EndCb(B)(X�) is a subring of

∏n
i=0 EndA(Xi), and hence EndCb(B)(X �) is semiper-

fect. It is clear that any idempotent of EndCb(B)(X�) splits. Therefore Cb(B) is a
Krull-Schmidt category. According to Theorem 3.13, we complete the proof.
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Definition 6.20. Let A be an abelian category. For a complex X� = (Xn, dn
X :

Xn → Xn+1
X )n∈Z of A, we define an objects of A for all n ∈ Z

Zn(X�) = Ker dn
X

Bn(X�) = Imdn−1
X

Cn(X�) = Cok dn−1
X

Hn(X�) = Zn(X�)/ Bn(X �)
this is called nth cohomology,

and define complexes

Z�(X�) = (Zn(X �), 0)n∈Z

B�(X�) = (Bn(X �),0)n∈Z

C�(X�) = (Cn(X�), 0)n∈Z

H�(X�) = (Hn(X�), 0)n∈Z.

A complex X � = (Xn, dn
X) is called an acyclic complex if Hn(X�) = 0 for all n ∈ Z.

Remark 6.21. Since we have a commutative diagram

O −−−−→ Bn(X �) −−−−→ Xn −−−−→ Cn(X �) −−−−→ O� ∥∥∥ �
O −−−−→ Zn(X�) −−−−→ Xn −−−−→ Bn+1(X �) −−−−→ O,

where all rows are exact, by snake lemma, we have a short exact sequence

O → Hn(X �) → Cn(X �) → Bn+1(X�) → O.

Exercise 6.22. Let A be an abelian category, and P a projective object of A. For
X � ∈ C(A), show that

HomK(A)(P, X�[i]) ∼= HomA(P, Hi(X�))

for all i.

Proposition 6.23. Let A be an abelian category, and let O → X � → Y � → Z� → O
be exact in C(A). Then we have the induced long exact sequence

. . . → Hn(X�) → Hn(Y �) → Hn(Z�) → Hn+1(X�) → . . .

Proof. According to snake lemma, we have a commutative diagram

Cn(X �) −−−−→ Cn(Y �) −−−−→ Cn(Z�) −−−−→ O� � �
O −−−−→ Zn+1(X �) −−−−→ Zn+1(Y �) −−−−→ Zn+1(Z�)

where all rows are exact. Then we get the exact sequence

Hn(X �) → Hn(Y �) → Hn(Z�) → Hn+1(X �) → Hn+1(Y �) → Hn+1(Z�),

by snake lemma.

Remark 6.24. Let u be a morphism of HomC(A)(X �, Y �). According to Proposi-
tion 6.5, we have an exact sequence in C(A)

O → Y � µu−→ M�(u) πu−→ TX � → O.
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Then we have the induced long exact sequence

. . . → Hn(X�) δn

−→ Hn(Y �) → Hn(M�(u)) → Hn+1(X�) δn+1

−−−→ . . . .

Moreover, it is not hard to see that δn = Hn(u) for all n ∈ Z (cf. Proposition 10.4).

Lemma 6.25. For n ∈ Z, The functor Hn : C(A) → A factors through K(A).

Proof. According to Remark 6.17, all objects of IC(B) are acyclic. Then by Propo-
sition 6.14, it is trivial.

Proposition 6.26. If X � u−→ Y � v−→ Z � w−→ TX� is a triangle in K(A), then we have
the induced long exact sequence

. . . → Hn(X �)
Hn(u)−−−−→ Hn(Y �)

Hn(v)−−−−→ Hn(Z�)
Hn(w)−−−−→ Hn+1(X �) → . . . .

Proof. According to Remark 6.10, for a representative u we have a commutative
diagram

O −−−−→ X � −−−−→ I�(X �) −−−−→ TX � −−−−→ O

u

� � ∥∥∥
O −−−−→ Y � v−−−−→ M�(u) w−−−−→ TX � −−−−→ O

where all rows belong to SC(A), with v = µu, w = πu. By Proposition 6.23, we have
the induced long exact sequence

. . . → Hn(X�) → Hn(Y �) → Hn(M�(u)) → Hn+1(X �) → . . . .

By Remark 6.24, Proposition 6.25, we get the statement.

7. Quotient Categories

Definition 7.1 (Multiplicative System). A multiplicative system in a category C
is a collection S of morphisms in C which satisfies the following axioms:

(FR1) (1) 1X ∈ S for every X ∈ C.
(2) For s, t ∈ S, if st is defined, then st ∈ S.

(FR2) (1) Every diagram in C
X

s−−−−→ Y

f

�
X ′

with s ∈ S, can be completed to a commutative square

X
s−−−−→ Y

f

� �g

X ′ t−−−−→ Y ′

with s, t ∈ S.
(2) Every diagram in C

Y�g

X ′ t−−−−→ Y ′
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with t ∈ S, can be completed to a commutative square

X
s−−−−→ Y

f

� �g

X ′ t−−−−→ Y ′

with s, t ∈ S.
(FR3) For f, g ∈ HomC(X, Y ) the following are equivalent.

(1) There exists s ∈ S such that sf = sg.
(2) There exists t ∈ S such that ft = gt.

Throughout this section, S is a multiplicative system of a category C.

Definition 7.2 (Saturated Multiplicative System). A multiplicative system S in a
category C is called saturated if it satisfies the following axiom:

(FR0) For a morphism s in C, if there exist f, g such that sf, gs ∈ S, then s ∈ S.

Definition 7.3. For a morphism f : X → Y , we set source(f) = X and sink(f) =
Y .

For a multiplicative system S, each X ∈ C, SX is a category defined by
1. Ob(SX) = {s ∈ S | source(s) = X},
2. HomSX (s, s′) = {f ∈ HomC(sink(s), sink(s′))|s′ = fs} for s, s′ ∈ Ob(SX),

and SX is a category defined by
1. Ob(SX) = {t ∈ S | sink(t) = X},
2. HomSX (t, t′) = {f ∈ HomC(source(t), source(t′))|t = t′f} for t, t′ ∈ Ob(SX).

Lemma 7.4. For any X ∈ C, SX satisfies the following axioms:
(L1) For any f1 ∈ HomSX (s, s1

′), f2 ∈ HomSX (s, s2
′), there exist s′′ ∈ SX and

g1 ∈ HomSX (s1
′, s′′), g2 ∈ HomSX (s2

′, s′′) such that g1f1 = g2f2.
(L2) For any f1, f2 ∈ HomSX (s, s′), there exist s′′ ∈ SX and g ∈ HomSX (s′, s′′)

such that gf1 = gf2.
(L3) SX is connected.

Definition 7.5. For X, Y ∈ C, we define a covariant functor

hX ◦ sink : SY → Set

where hX ◦ sink(s) = HomC(X, sink(s)) for s ∈ SY , and a contravariant functor

hY ◦ source : SX → Set

where hY ◦ source(t) = HomC(source(t), Y ) for t ∈ SX .

Lemma 7.6. Let X,Y ∈ C. Define a relation , on the collection

{(f, s)|s ∈ SY , f ∈ HomC(X, sink(s))}
as follows: (f1, s1) ∼ (f2, s2) if and only if there exist h1 ∈ HomSY (s1, s′), h2 ∈
HomSY (s2, s′) such that (h1f1, s′) = (h2f2, s′). Then ∼ is an equivalence relation
and we have

colim
SY

hX ◦ sink = {(f, s)|s ∈ SY , f ∈ HomC(X, sink(s))}/ ∼ .

(Write the equivalence class [(f, s)] for (f, s), where f ∈ HomC(X, sink(s)), s ∈ SY .)
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Remark 7.7 (Set-Theoretic Remark). In the above, we dealt with SY as a small
category (i.e. Ob(SY ) is a set). In general, we don’t know the existence of the
above colimit. But the above colimit exists if there is a small subcategory S’Y of
SY satisfying the following (this category is called a cofinal subcategory):

For any Y ∈ C, SY satisfies the following axiom:
(Co) For any s ∈ SY , there exists a morphism f : s → s′ with s′ ∈ S’Y .

Then colim
S’Y

hX ◦ sink exists, and we have

colim
SY

hX ◦ sink = colim
S’Y

hX ◦ sink .

Lemma 7.8. For any X,Y,Z ∈ C we have a well-defined mapping

colim
SY

hX ◦ sink×colim
SZ

hY ◦ sink → colim
SZ

hX ◦ sink

which is defined as follows: with each pair ([(f, s)], [(g, t)]), since by (FR2) there
exist s′ ∈ S with source(s′) = sink(t), g′ ∈ HomC(sink(s), sink(s′)) such that g′s =
s′g, we associate the equivalence class [(g′f, s′t)].

Sketch.

X
f

���
��

��
��

� Y

s

��

g

		�
��

��
��

� Z

t

��
Y ′

g′

		��
��

��
��

Z ′

s′

��
Z′′

Definition 7.9 (Quotient Category). We define a category S−1 C, called the quo-
tient category of C, as follows:

1. Ob(S−1 C) = Ob(C).
2. For X,Y ∈ Ob(C), the morphism set is given by

HomS−1 C(X, Y ) = colim
SY

hX ◦ sink .

3. For X,Y,Z ∈ Ob(S−1 C), the law of composition is given by

HomS−1 C(X,Y )× HomS−1 C(Y,Z) → HomS−1 C(X, Z),
(([(f, s)], [(g, t)]) �→ [(g′f, s′t)]),

where [(g′, s′)] ∈ HomS−1 C(sink(s), sink(t)) with g′s = s′g.
4. The identity of X ∈ Ob(S−1 C) is given by the equivalence class [(1X , 1X)].

Definition 7.10 (Quotient Functor). We have a functor Q : C → S−1 C, called the
quotient functor, such that

Q(X) = X for X ∈ C, Q(f) = [(f, 1Y )] for f ∈ HomC(X, Y ).

Proposition 7.11 (Basic Properties). The following hold.
1. Q : C → S−1 C sends null objects to null objects.
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2. For f, g ∈ HomC(X, Y ) the following are equivalent.
(1) Q(f) = Q(g).
(2) There exists s ∈ SY such that sf = sg.
(3) There exists t ∈ SX such that ft = gt.

3. The following hold.
(1) Q(s) is an isomorphism for all s ∈ S.
(2) For any X,Y ∈ S−1 C we have

HomS−1 C(X, Y ) = {Q(s)−1Q(f)|s ∈ SY , f ∈ HomC(X, sink(s))}
= {Q(g)Q(t)−1|t ∈ SX , g ∈ HomC(source(t), Y )}.

4. For f ∈ HomC(X,Y ) the following are equivalent.
(1) Q(f) is an isomorphism.
(2) There exist morphisms g, h in C with gf, fh ∈ S.

5. Assume S is saturated. Then for any f ∈ HomC(X, Y ) the following hold.
(1) Q(f) is an isomorphism if and only if f ∈ S.
(2) If there exists s ∈ SY with sf ∈ S, then f ∈ S.
(3) If there exists t ∈ SX with ft ∈ S, then f ∈ S.

6. For any X,Y ∈ C we have a bijection

ζ = ζX,Y : colim
SY

hX ◦ sink → colim
SX

hY ◦ source

which associates with each [(f, s)] the equivalence class of (t, g) with ft = sg,
and its inverse

η = ηX,Y : colim
SX

hY ◦ source → colim
SY

hX ◦ sink

which associates with each [(t, g)] the equivalence class of (f, s) with ft = sg.

Proposition 7.12 (Uniqueness of Quotient). Let C′ be another category and F :
C → C′ a functor such that F (s) is an isomorphism for all s ∈ S. Then there exists
a unique functor F : S−1 C → C′ such that F = FQ.

C
Q

��

F

				
		

		
			

S−1 C
F

��


 C ′

Sketch. Since every object of S−1 C is of the form QX for X ∈ C, we can define
F : S−1 C → C′ as follows. Let F (QX) = F (X) for QX ∈ S−1 C and F ([(f, s)]) =
(Fs)−1Ff for [(f, s)] ∈ HomS−1 C(QX, QY ). Then we have F = FQ and the
required property.

Proposition 7.13. Let C ′ be another category and F, G : S−1 C → C′ functors.
Then we have a bijective correspondence

Mor(F, G) ∼→ Mor(FQ,GQ), (ζ �→ ζQ).

Proof. By the proof of the above lemma, it is easy.

Corollary 7.14. Let S̃ = {f|Q(f) is an isomorphism in S−1 C}. Then S̃ is a sat-
urated multiplicative system, and S̃

−1 C is equivalent to S−1 C.

Remark 7.15. Considering S−1 C, by Corollary 7.14, we may assume S is a satu-
rated multiplicative system.
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Proposition 7.16. Let D be a full subcategory of C. Assume S∩D is a multiplica-
tive system in D and one of the following conditions is satisfied:

(a) For any s ∈ SY with Y ∈ D, there exists f ∈ HomC(sink(s), Y ′) with Y ′ ∈ D
such that fs ∈ S.

(b) For any t ∈ SX with X ∈ D, there exists g ∈ HomC(X ′, source(t)) with
X ′ ∈ D such that tg ∈ S.

Then the canonical functor (S∩D)−1D → S−1 C is fully faithful, so that (S∩D)−1D
can be considered as a full subcategory of S−1 C.

Proof. By the same reason of Remark 7.7.

Proposition 7.17. If C is an additive category, then S−1 C is an additive category,
and Q : C → S−1 C is additive functor.

Proof. It is easy to see that S−1 C satisfies the condition of Definition 2.1. For
X =

∐n
i=1Xi, by Proposition 2.3 we have FX =

∐n
i=1FXi in S−1 C. Therefore,

S−1 C is an additive category and Q is an additive category by Definition 2.5,
Proposition 2.10.

8. Quotient Categories of Triangulated Categories

Definition 8.1 (Compatible with Triangle). A multiplicative system S in a trian-
gulated category C is said to be compatible with the triangulation if it satisfies the
following axioms:

(FR4) For a morphism u in C, u ∈ S if and only if Tu ∈ S.
(FR5) For triangles (X, Y, Z,u, v, w), (X ′, Y ′, Z′, u′, v′, w′) and morphisms f : X →

X ′, g : Y → Y ′ in S with gu = u′f , there exists h : Z → Z′ in S such that
(f, g, h) is a homomorphism of triangles.

Throughout this section, C is a triangulated category, we assume that S is a
saturated multiplicative system of C which is compatible with the triangulation,
and Q : C ′ → S−1 C is a quotient functor.

Lemma 8.2. There exists a unique auto-functor TS−1 C : S−1 C → S−1 C such that
QTC = TS−1 CQ.

We simply write T for TS−1 C.

Lemma 8.3. Let (X, Y, Z,u, v,w), (X′, Y ′, Z′, u′, v′, w′) be triangles in C, and let
α ∈ HomS−1 C(QX, QX ′), β ∈ HomS−1 C(QY,QY ′) such that (Qu′)α = βQ(u).
Then there exists γ ∈ HomS−1 C(QZ,QZ′) such that

QX
Qu−−−−→ QY

Qv−−−−→ QZ
Qw−−−−→ TQX

α

� �β

�γ

�Tα

QX ′ Qu′

−−−−→ QY ′ Qv′

−−−−→ QZ′ Qw′

−−−−→ TQX ′

is commutative.

Proof. There are f : X → X′
1, s : X ′ → X ′

1, g : Y → Y ′, t : Y ′ → Y ′
1 such

that α = (Qs)−1Qf , β = (Qt)−1Qg and s, t ∈ S. Then there are u′
1 : X′

1 → Y ′
2 ,
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s1 : Y ′ → Y ′
2 such that u′

1s = s1u′, s1 ∈ S. Since (Qu′)α = βQ(u), there are
s2 : Y ′

2 → Y ′
3 , t1 : Y ′

1 → Y ′
3 such that s2u′

1f = t1gu, s2s1 = t1t and s2s1 ∈ S.

X
f

���
��

��
��

� X ′

s

��

u′

���
��

��
��

�

X ′
1

u′
1

���
��

��
��

Y ′

s1

��
Y ′

2

s2

��
Y ′

3

X
u �� Y

g

���
��

��
��

� Y ′

t

��
Y1

t1

��
Y ′

3

Therefore there are h : Z → Z′
1, s3 : Z′ → Z′

1 such that we have a commutative
diagram

X
u−−−−→ Y

v−−−−→ Z
w−−−−→ TX

f

� �t1g

�h

�Tf

X1
s2u′

1−−−−→ Y ′
2

v′
−−−−→ Z′

1
w′′

−−−−→ TX′
1

s

	 	s2s1

	s3

	Ts

X ′ u′
−−−−→ Y ′ v′

−−−−→ Z′ w′
−−−−→ TX.

with s3 ∈ S. Since (Qs2s1)−1(Qt1)Qg = (Qt1t)−1(Qt1)Qg = (Qt)−1Qg = β, let
γ = (Qs3)−1h, then γ satisfies the statement.

Definition 8.4 (Triangulation). A sextuple (QX ′,QY ′, QZ ′, λ, µ, ν) in S−1 C is
called a triangle if there exists a triangle (X, Y,Z, u, v,w) in C such that
(QX ′,QY ′,QZ′, λ,µ, ν) is isomorphic to (QX,QY, QZ,Qu,Qv,Qw).

Theorem 8.5. S−1 C is a triangulated category and Q : C → S−1 C is a ∂-functor.

Proof. Since for any morphism α : QX → QY in S−1 C there are f : X → Y1,
s : Y → Y1, t : X1 → Y , g : X1 → Y such that we have commutative diagram

X X
Qt←−−−− X1

Qf

� �α

�Qg

Y1
Qs←−−−− Y Y

with s, t ∈ S, it is easy.

Proposition 8.6. Let A be an abelian category and H : C → A a cohomological
functor such that H(s) are isomorphisms for all s ∈ S. Then there exists a unique
cohomological functor H : S−1 C → A such that H = HQ.

Proposition 8.7. Let D be another triangulated category and F = (F, θ) : C → D
a ∂-functor such that Fs are isomorphisms for all s ∈ S. Then there exists a unique
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∂-functor F = (F , θ) : S−1 C → D such that F = FQ and θ = θQ.

C
Q

��

F

				
		

		
			

S−1 C
F

��


 C ′

Proposition 8.8. Let D be another triangulated category and F = (F, θ), G =
(G, η) : S−1 C → D ∂-functors. Then we have a bijective correspondence

∂ Mor(F, G) ∼→ ∂ Mor(FQ,GQ), (ζ �→ ζQ).

Proof. By Proposition 7.13, it remains to check the following commutativity. For
X ∈ C, ψ ∈ ∂ Mor(FQ, GQ), we have

FTS−1 CQX FQTCX
θQ−−−−→ TDFQX

ψTC

� �TDψ

GTS−1 CQX GQTCX −−−−→
ηQ

TDGQX.

9. Épaisse Subcategories

Definition 9.1 (Épaisse Subcategory). An épaisse subcategory U of a triangulated
category C is a triangulated full subcategory of C such that if u ∈ HomC(X,Y )
factors through (an object of) U and is embedded in a triangle (X, Y, Z,u, v,w) in
C with Z ∈ U , then X, Y ∈ U .

Proposition 9.2. For a triangulated full subcategory U of C, the following are
equivalent.

1. U is an épaisse subcategory of C.
2. U is closed under direct summands.

Proof. 1 ⇒ 2. Let X,Y ∈ C such that X⊕Y ∈ U . By Proposition 4.8, we have
a triangle (T−1Y,X,X⊕Y, 0, µ, π). Since 0 : T−1Y → X factors through O ∈ U ,
T−1Y, X ∈ U , and hence Y, X ∈ U .

2 ⇒ 1. Let (X, Y, Z,u, v,w) be a triangle such that Z ∈ U and u factors through
Y ′ ∈ U , then we have a morphism of triangles

X
u′

−−−−→ Y ′ −−−−→ Z′ −−−−→ TX∥∥∥ �u′′
� ∥∥∥

X
u−−−−→ Y −−−−→ Z −−−−→ TX.

By Proposition 4.8, we have a triangle (Y ′, Z ′⊕Y, Z,∗, ∗, ∗). We have Z′⊕Y ∈ U ,
and then Y ∈ U . Therefore Y, Z ∈ U implies X ∈ U .

Definition 9.3. For an épaisse subcategory U of a triangulated category C, we
denote by Φ(U) the collection of morphisms u in U . such that M(u) ∈ U .

Lemma 9.4. Let U be an épaisse subcategory of a triangulated category C. For a
morphism f in C, the following are equivalent.

1. f factors through some object of U.
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2. There exists s ∈ Φ(U) such that sf = 0.
3. There exists t ∈ Φ(U) such that ft = 0.

Proof. 1 ⇔ 2. If f factors through U ∈ U , then we have a commutative diagram

X X

u

� �f

U
x−−−−→ Y

s−−−−→ Z
z−−−−→ TU.

where the bottom row is a triangle, and with s ∈ Φ(U). We have sf = 0. Con-
versely, if sf = 0 with s ∈ Φ(U), then there exists u such that we also have the
above commutative diagram. Therefore f = xu.

1 ⇔3. Similarly.

Proposition 9.5. Let U be an épaisse subcategory of a triangulated category C.
Then Φ(U) is a saturated multiplicative system which is compatible with the trian-
gulation.

Proof. We use the following diagram to check the axioms of a multiplicative system.

X
u−−−−→ Y

i−−−−→ Z′ i′−−−−→ TX∥∥∥ �v

�z

∥∥∥
X

w−−−−→ Z
k−−−−→ Y ′ k′

−−−−→ TX�j

�y

�T u

X ′ X′ j′

−−−−→ TY�j′
�x

TY
Ti−−−−→ TZ′

Diagram A

(FR0) Let v : X → Y, u : Y → Z, r : Z → U be morphisms such that ru, uv ∈
Φ(U ). Then we have a commutative diagram

Y
u−−−−→ Z

j−−−−→ X ′ j′

−−−−→ TY∥∥∥ �r

�l

∥∥∥
Y

ru−−−−→ U
p−−−−→ V

q−−−−→ TY

with V ∈ U . Since x = (Ti)j ′ = (Ti)ql, x factors through V ∈ U . Since uv ∈ Φ(U),
we have Diagram A with Y ′ ∈ U . Therefore, X ′, Z′ ∈ U , and hence u ∈ Φ(U).

(FR1) (1) Since O ∈ U , it is trivial. (2) If u, v ∈ Φ(U), then we have Diagram A
with Z′,X ′ ∈ U . Then Y ′ ∈ U , and hence vu ∈ Φ(U).

(FR2) (1) Given v ∈∈ Φ(U), i, we have Diagram A with X′ ∈ U . Then z ∈ Φ(U).
(2) Given z ∈ Φ(U ), k, we have Diagram A with X ′ ∈ U . Then v ∈ Φ(U).

(FR3) By Lemma 9.4.
(FR4) It is trivial.
(FR5) By Proposition 4.9, it is easy.
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Theorem 9.6. For a saturated multiplicative system S of a triangulated category
C which is compatible with the triangulation, let Ψ(S) be the full subcategory of C
consisting of objects X such that QX = O, where Q : C → S−1 C is the canonical
quotient. Then Ψ(S) is an épaisse subcategory of C.

Hence, Φ and Ψ induce one to one correspondence between épaisse subcategories
and saturated multiplicative systems which is compatible with the triangulation.

Proof. Let (QX,QY,QZ,Qu,Qv,Qw) be the image of a triangle (X,Y,Z, u, v, w)
of C. If two objects of QX,QY, QZ are O, then the rest one is clearly O. Then it
is easy to see that Ψ(S) is a triangulated full subcategory of C. If Z ∈ Ψ(S) and
u factors through some object of Ψ(S), then QZ = O and Qu factors through O.
Therefore, QX = QY = O and hence X, Y ∈ Ψ(S).

Definition 9.7. For an épaisse subcategory U of a triangulated category C, we
denote by C/U the quotient category Φ(U)−1C. In this case, we say that 0 → U →
C → C/U → 0 is an exact sequence of triangulated categories.

Proposition 9.8. Let C be a triangulated category, U an épaisse subcategory of C,
and Q : C → C/U the canonical quotient. For M ∈ C, the following are equivalent.

1. For every f : X → Y ∈ Φ(U), HomC(f,M) : HomC(Y, M) → HomC(X,M) is
bijective.

2. HomC(U , M) = 0.
3. For every X ∈ C, QX,M : HomC(X,M) → HomC/U (QX, QM) is bijective.

Proof. 1 ⇒ 2. For every object U ∈ U , O → U
1−→ U → O is a triangle. Then

0 = HomC(O, M) ∼= HomC(U,M).
2 ⇒ 3. Every morphism of HomC/U(QX,QM) is represented by a diagram

X ′

s

��

f

		��
��

��
��

X M

where s is contained in a triangle U → X′ s−→ X → TU with U ∈ U . Then there
exists f ′ : X → M in C such that f = f ′s, because HomC(U,M) = 0. Hence QX,M

is surjective. Let U → X ′ → X → TU be a triangle with U ∈ U . If a morphism
g : X → M satisfies gs = 0, then there exist u : TU → M such that g = ut.
Therefore g = 0, because u ∈ HomC(U,M) = 0. Hence QX,M is injective.

3 ⇒ 1. Let f : X → Y be a morphism in Φ(U ). Then we have the following
commutative diagram

HomC(Y, M)
Hom(f,M)−−−−−−−→ HomC(X, M)

QY,M

� �QX,M

HomC/U (QY,QM)
Hom(Qf,QM)−−−−−−−−−→ HomC/U (QX,QM)

According to 3, QX,M and QY,M are bijective. Since QU = 0, Hom(Qf,QM) is
bijective. Hence Hom(f,M) is bijective.

Definition 9.9 (U-Local Object). An object M is called U-local (resp., U-colocal)
if it satisfies the equivalent conditions (resp., the dual conditions ) of Proposition

9.8 . Let 0 → U → C Q−→ C/U → 0 be an exact sequence of triangulated categories.
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The right (resp., left ) adjoint of Q is called a section functor. If there exists a
section functor S, then {C/U ; Q, S} is called a localization (resp., colocalization) of

C, and 0 → U → C Q−→ C/U → 0 is called localization (resp., colocalization) exact.

Lemma 9.10. Let {C/U ; Q,S} be a localization of C. For every object V ∈ C/U,
SV is U-local.

Proof. For every f : X → Y ∈ Φ(U), we have a commutative diagram

HomC(Y,SV )
Hom(f,SV )−−−−−−−→ HomC(X,SV )��

��

HomC/U(QY,V )
Hom(Qf,V )−−−−−−−→ HomC/U (QX, V )

Therefore Hom(f, SV ) is an isomorphism. By Proposition 9.8, SV is U-local.

Proposition 9.11. Let {C/U ;Q,S} be a localization of C, and τ : QS → 1C/U and
σ : 1C → SQ adjunction arrows. Then the following hold.

1. τ is an isomorphism (i.e. S is fully faithful ).
2. For every object X ∈ C, the triangle U → X

σX−−→ SQX → TU satisfies that
U is in U.

Proof. 1. For every X ∈ C and Y ∈ C/U , we have a commutative diagram

HomC(X, SY ) HomC(X, SY )

QX,SY

� ��

HomC/U (QX, QSY )
Hom(QX,τY )−−−−−−−−→ HomC/U (QX, Y ).

By Proposition 9.8 and Lemma 9.10, QX,SY is an isomorphism. Then Hom(QX,
τY ) is an isomorphism. For any Z ∈ C/U , there exists X ∈ C such that Z ∼= QX .
Hence τ is an isomorphism.

2. It suffices to show that for any X ∈ C, QσX is an isomorphism. By the
property of adjunction arrows, we have QX

QσX−−−→ QSQX
τQX−−−→ QX = 1QX , and

hence QσX is an isomorphism.

Corollary 9.12. Let M ∈ C. Then M is U-local if and only if M ∼= SQM .

Proposition 9.13. Let C and C ′ be triangulated categories, F : C → C′ a ∂- functor
which has a fully faithful right adjoint S : C ′ → C. Then F induces an equivalence
between C/ KerF and C′.

Proof. By the universal property of Q : C → C/ KerF , we have the following
commutative diagram

C
Q

��

F



����������

C/ KerF
F ′

�� C′

If f : X → Y is a morphism in C, then Ff is an isomorphism if and only if Qf is
an isomorphism. For every object M ∈ C, FM → FSFM is an isomorphism, and
then QM → QSFM is an isomorphism. Therefore Q → QSF is an isomorphism.
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By the universal property of Q and QSF = QSF ′Q, we have 1C/ Ker F
∼= QSF ′.

Since, F ′QS = FS ∼= 1C′ , F ′ is an equivalence.

Definition 9.14 (stable t-structure). For full subcategories U and V of C, (U ,V)
is called a stable t-structure in C provided that

1. U and V are stable for translations.
2. HomC(U ,V) = 0.
3. For every X ∈ C, there exists a triangle U → X → V → TU with U ∈ U and

V ∈ V.

Proposition 9.15. Let C be a triangulated category, (U ,V) a stable t-structure in
C. Then the following hold.

1. For X ∈ C, HomC(X,V) = 0 if and only if X is isomorphic to an object of U.
2. For Y ∈ C, HomC(U , Y ) = 0 if and only if Y is isomorphic to an object of V.
3. Let Ũ be the full subcategory of C consisting objects which are isomorphic to

objects of U. Then Ũ is an épaisse subcategory of C.
4. Let Ṽ be the full subcategory of C consisting objects which are isomorphic to

objects of V. Then Ṽ is an épaisse subcategory of C.

Proof. 1. For X ∈ C, we have a triangle

UX
τX−−→ X

σX−−→ VX → TUX.

If HomC(X,V) = 0, then σX = 0 and UX
∼= X⊕T−1VX . Therefore, T−1VX = O

and X ∼= UX , because of HomC(UX, T−1VX) = 0.
2. Similarly.
3, 4. By 1, 2, it is trivial.

Proposition 9.16. Let C be a triangulated category. If {V ; Q,S} is a localization
of C, then S is fully faithful, (U , SV) is a stable t-structure, where U = KerQ.
Conversely, if (U ,V) is a stable t-structure in C, then the canonical inclusion S :
V → C has a left adjoint Q such that {V;Q,S} is a localization.

Proof. Let {V; Q,S} be a localization of C. Then, by

HomC(U , SV) ∼= HomC(QU ,V)
= 0

and Proposition 9.13, it is clear that S is fully faithful and (U , SV) is a stable
t-structure. Conversely, let (U ,V) be a stable t-structure in C. For X ∈ C, let
UX → X → VX → TUX be triangle such that UX ∈ U and VX ∈ V. Since
HomC(U ,V) = 0 and U and V are stable under translations, for any V ∈ V, we
have an isomorphism

HomC(VX , V ) ∼= HomC(X, V ).

According to Theorem 1.18, S : V → C has a left adjoint Q such that {V;Q,S} is
a localization.

Remark 9.17. Similarly, if (U ,V) is a stable t-structure in C, then there is a
functor Q : C → U such that {U ; Q,S′} is a colocalization of C, where S′ : U → C
is the canonical embedding. Conversely, if {U ;Q,S′} is a colocalization of C, then
(S′U , KerQ) is a stable t-structure in C.
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10. Derived Categories

Throughout this section, A is an abelian category.

Definition 10.1. For X �, Y � ∈ K∗(A), a morphism u ∈ HomC(A)(X �, Y �) is called
a quasi-isomorphism if Hn(u) are isomorphisms for all n ∈ Z, where ∗ = nothing,
+,−, b.

K∗,φ(A) is a full subcategory of K∗(A) consisting of complexes of which all ho-
mologies are O, where ∗ = nothing, +,−, b.

Proof. It is easy to see that K∗,φ(A) is an épaisse subcategory of K∗(A). By Propo-
sition 6.26, it is easy.

Definition 10.2 (Derived Category). The derived category D∗(A) of an abelian
category A is K∗(A)/K∗,φ(A), where ∗ = nothing, +,−, b.

Remark 10.3. For two morphisms f, g : X� → Y � in C(A), f = g ⇒ f �
h

g ⇒
f ∼= g in D(A) ⇒ Hn(f) ∼= Hn(g) for all n. The converse implications do not hold.

Proposition 10.4. If O → X � u−→ Y � v−→ Z� → 0 is a exact sequence in C(A), then
it can be embedded in a triangle in D(A)

QX � Qu−−→ Y � Qv−−→ QZ � Qw−−→ TQX �.

Proof. According to Remark 6.10, we have a commutative diagram in C(A)
O O� �

O −−−−→ X � −−−−→ I�(X �) −−−−→ TX � −−−−→ O

u

� �x

∥∥∥
O −−−−→ Y � v′

−−−−→ M�(u) w−−−−→ TX � −−−−→ O

v

� �s

Z � Z�� �
O O

where all rows and columns are exact. Then X � u−→ Y � v′
−→ Z� w−→ TX � is a triangle

in K(A). Since I�(X �) ∈ Kφ(A), by Proposition 6.23, s is a quasi-morphism, and
hence we have a commutative diagram in D(A)

QX � Qu−−−−→ QY � Qv′

−−−−→ QM�(u)
Qw−−−−→ TQX �∥∥∥ ∥∥∥ �Qs

∥∥∥
QX � Qu−−−−→ QY � Qv−−−−→ QZ

Qw(Qs)−1

−−−−−−−→ TQX �.

Definition 10.5. A full subcategory A′ of A is called a thick abelian full subcate-
gory if A′ is an abelian exact full subcategory which is closed under extensions.
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For ∗ = nothing,+,−, b, we denote by K∗
A′(A) the full subcategory of K∗(A)

consisting of complexes X � ∈ K(A) with Hn(X�) ∈ A′ for all n ∈ Z.
Moreover, we set D∗

A′(A) = K∗
A′(A)/ K∗,φ(A), where ∗ = nothing,+,−, b.

Definition 10.6 (Truncations). For a complex X� = (Xi, di), we define the fol-
lowing truncations:

σ>nX� : . . . → 0 → Im dn → Xn+1 → Xn+2 → . . . ,

σ≤nX� : . . . → Xn−2 → Xn−1 → Ker dn → 0 → . . . ,

σ′
≥nX� : . . . → 0 → Cok dn−1 → Xn+1 → Xn+2 → . . . ,

σ′
<nX� : . . . → Xn−2 → Xn−1 → Imdn−1 → 0 → . . . ,

τ≥nX� : . . . → 0 → Xn → Xn+1 → Xn+2 → . . . ,

τ≤nX� : . . . → Xn−2 → Xn−1 → Xn → 0 → . . . .

Then we have exact sequences in C(A)

O → σ≤n(X �) → X� → σ>n(X �) → O

O → σ′
<n(X �) → X� → σ′

≥n(X �) → O

O → τ≥n(X �) → X � → τ≤n+1(X �) → O

Then it is easy to see that

Hi(σ>nX�) =

{
O if i ≤ n

Hi(X �) if i > n

Hi(σ′
≥nX�) =

{
O if i < n

Hi(X �) if i ≥ n

Hi(σ≤nX�) =

{
Hi(X �) if i ≤ n

O if i > n

Hi(σ′
<nX�) =

{
Hi(X �) if i < n

O if i ≥ n

Proposition 10.7. The following hold.
1. The canonical functor D∗(A) → D(A) is fully faithful, where ∗ = +,−.
2. The canonical functor Db(A) → D∗(A) is fully faithful, where ∗ = +,−.
3. The canonical functor D∗

A′(A) → D∗(A) is fully faithful, where ∗ = +,−, b.

Proof. According to Definitions 10.2, 10.5, it suffices to check the condition of
Proposition 7.16. Let X� ∈ K−(A), Y � ∈ K(A) and a quasi-isomorphism X� → Y �

in K(A). Then we may assume that there is n such that Hi(Y �) = 0 for all i > n.
Then the morphism Y � → σ≤n(Y �) is a quasi-isomorphism, and σ≤n(Y �) ∈ K−(A).
For the other cases, similarly.

Let InjA (resp., ProjA) be the full subcategory of A consisting of injective (resp.,
projective) objects.

Lemma 10.8. For X � ∈ K(A) and I � ∈ K+(InjA) (resp., P � ∈ K−(ProjA)), if X �

is acyclic, then we have

HomK(A)(X�, I�) = 0.

(resp., HomK(A)(P �, X�) = 0)

Corollary 10.9. The following hold.
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1. If A has enough injectives, then we have an isomorphism

HomK(A)(X�, I�) ∼= HomD(A)(X �, I �)

for X � ∈ K(A), I� ∈ K+(InjA).
2. If A has enough projectives, then we have an isomorphism

HomK(A)(P �, Y �) ∼= HomD(A)(P �, Y �)

for P � ∈ K−(ProjA), Y � ∈ K(A).

Proof. By Lemma 10.8 and Proposition 9.8, and their dual.

Lemma 10.10. The following hold.
1. Let L be a collection of objects of A such that every object X ∈ A is a image

of an epimorphism from some object of L. Then for any X� ∈ K−(A), there
exists P � ∈ K−(L) and a morphism f : P � → X � in K(A) such that f is a
quasi-isomorphism.

2. Let A′ be a thick abelian full subcategory of A such that every object X ∈ A′

is a image of an epimorphism from some object of (ProjA) ∩ A′. Then for
any X � ∈ K−

A′(A), there exists P � ∈ K−((ProjA) ∩ A′) and a morphism f :
P � → X � in K(A) such that f is a quasi-isomorphism.

Proof. 1. Given an object X ∈ K−(A), we may assume that Xi = O for all i > 0.
By the backward induction on n, we construct a complex P � ∈ K−(ProjA). as
follows. Let Z′n and Zn be Zn(P �) and Zn(X �), respectively. Assume we have a
commutative diagram

Z′n

����

�� ��Pn

����
Zn �� ��Xn

We take a pull back Mn of Xn−1 → Zn ← Z ′n, and take an epimorphism from
P n−1 → Mn. Then by Proposition 2.19, Hn(P �) ∼= Hn(X�) and the induced mor-
phism Zn(P �) → Zn(X �) is epic.

Z ′n−1

����

�� ��Pn−1

����

�� ��Mn−1

PB
����

��Z′n

����

�� ��Pn

����
Zn−1 �� ��Xn−1 Xn−1 ��Zn �� ��Xn

2. Given an object X ∈ K−
A′(A), we may assume that Xi = O for all i > 0. By

the backward induction on n, we construct a complex P � ∈ K−((ProjA) ∩ A′). as
follows. Let B′n and Bn (resp., C ′n and Cn) be Zn(P �) and Zn(X�) (resp., Cn(P �)
and Cn(X�), respectively. Assume we have a commutative diagram

Pn

��

�� ��C ′n

��
Xn �� ��Cn

where P n, C′n ∈ A′ . Then B′n ∈ A′. We take a pull back C ′n−1 of Cn−1 → Bn ←
B′n. Then by Proposition 2.19, Hn−1(P �) ∼= Hn−1(X �). Since A′ is closed under
extensions, C ′n−1 ∈ A′ . Therefore we can take an epimorphism from P n−1 →
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C ′n−2, with P n−1 ∈ (ProjA) ∩A′. Since Pn−1 is projective, we have a morphism
P n−1 → Xn−1, and we have a commutative diagram

Pn−1

��

�� ��C′n−1

P B

��

�� ��B′n−1

��

�� ��Pn

��

�� ��C ′n

��
Xn−1 �� ��Cn−1 �� ��Bn−1 �� ��Xn �� ��Cn

Proposition 10.11. The following hold.
1. If A has enough projectives, then

K−(ProjA)
t∼= D−(A).

2. If A has enough injectives, then

K+(InjA)
t∼= D+(A).

3. Let A′ be a thick abelian full subcategories of A such that A′ has enough
A-projectives in A′. Then we have

D∗(A′)
t∼= D∗

A′(A)

where ∗ = −, b.
4. Let A′ be a thick abelian full subcategories of A such that A′ has enough

A-injectives in A′. Then we have

D∗(A′)
t∼= D∗

A′(A)

where ∗ = +, b.

Proof. 1. By Lemmas 10.8, 10.10, (K−(ProjA),K−,φ(A)) is a stable t-structure in
K−(A). According to Proposition 9.16, Remark 9.17, we get the statement.

2. Similarly.
3. Since we have the canonical full embedding K−(A′) → K−(A), it suffices

to check the condition of Proposition 7.16. Let X � ∈ K−(A′), Y � ∈ K−(A), and
Y � → X� a quasi-isomorphism in K−(A). Since all homologies of Y � are in A′, by
Lemma 10.10, we have X ′� → Y � is a quasi-isomorphism, with X′� ∈ D−(A′).

4. Similarly.

Definition 10.12. In the case of A having enough projectives (resp., injectives),
we denote by K−,b(ProjA) (resp., K+,b(InjA)) the triangulated full subcategory
of K−(ProjA) (resp., K+(InjA)) consisting of complexes of which homologies are
bounded.

Corollary 10.13. The following hold.
1. If A has enough projectives, then

K−,b(ProjA)
t∼= Db(A).

2. If A has enough injectives, then

K+,b(InjA)
t∼= Db(A).
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Example 10.14. For a coherent ring A, let modA be the full subcategory of Mod A
consisting of right coherent A-modules. Then modA is an thick abelian full sub-
category of Mod A. Therefore, we have

D∗(mod A)
t∼= D∗

mod A(Mod A)

where ∗ = −, b. We often write D∗
c(ModA) for D∗

mod A(ModA).

Definition 10.15 (Yoneda Ext). For X,Y ∈ A and n ∈ N, let Exactn
A(X, Y ) be

the set of exact sequences in A of the form

Σ : O → Y → Xn−1 → . . . → X0 → X → O.

For Σ1, Σ2 ∈ Exactn
A(X,Y ), we write Σ1 → Σ2 if we have a commutative diagram

Σ1 :O −−−−→ Y −−−−→ Xn−1 −−−−→ . . . −−−−→ X0 −−−−→ X −−−−→ O� ∥∥∥ � . . .
� ∥∥∥

Σ2 :O −−−−→ Y −−−−→ X ′
n−1 −−−−→ . . . −−−−→ X ′

0 −−−−→ X −−−−→ O.

And, we define Σ1 ∼ Σm if there are Σi (2 ≤ i ≤ m − 1) such that Σi � Σi+1

(1 ≤ i ≤ m − 1), where � means → or ←. Then ∼ is a equivalent relation on
Exactn

A(X,Y ). We denote Exactn
A(X,Y )/ ∼ by Extn

A(X, Y ).

Proposition 10.16. For X, Y ∈ A and n ∈ N, We have a bifunctorial isomor-
phism

Extn
A(X,Y ) ∼→ HomD(A)(X, TnY ).

Proof. Let Σ ∈ Exactn
A(X, Y ) has the form

Σ : O → Y → Xn−1 → . . . → X0 → X → O.

Then we have a commutative diagram
Y [n − 1] :O −−−−−→ Y −−−−−→ O

M � : O −−−−−→ Xn−1 −−−−−→ Xn−2 −−−−−→ . . . −−−−−→ X1 −−−−−→ X0 −−−−−→ O

X : O −−−−−→ X −−−−−→ O

Therefore, we have a triangle Y [n − 1] → M � → X
φ(Σ)−−−→ Y [n]. It is easy to see

that φX,Y : Extn
A(X,Y ) → HomD(A)(X, Y [n]) is a bifunctorial isomorphism (left to

the reader).

Remark 10.17. Assume A has enough injectives. For X,Y ∈ A, let

O → Y → I0 → I1 → . . .

be an injective resolution, that is, Y → I� is a quasi-isomorphism. Then by Corol-
lary 10.9, it is easy to see that

Extn
A(X,Y ) ∼= HomD(A)(X,T nY )

∼= HomD(A)(X,T nI �)
∼= HomK(A)(X, TnI �)
∼= Hn(HomA(X, I �)).

The last term is Extn
A(X,Y ) in the sense of standard homological algebra.
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Definition 10.18. Let A be an abelian category with enough injectives. A com-
plex X� ∈ K∗(A) is said to have finite injective dimension if there is n ∈ Z such
that HomD∗(A)(M, X�[i]) = 0 for all M ∈ A and i > n, where ∗ = nothing, +,−, b.

We denote by K∗(A)fid the full subcategory of K∗(A) consisting of X � ∈ K∗(A)
which have finite injective dimension.

Moreover, for a thick abelian full subcategory A′ of A, we denote by K∗
A′(A)fid

the full subcategory of K∗
A′(A) consisting of X� ∈ K∗

A′(A) which have finite injective
dimension.

Proposition 10.19. Let A be an abelian category with enough injectives. Then
K∗(A)fid and K∗

A′(A)fid are quotientizing subcategories of K∗(A).

Proof. For u : X � → Y � in K∗(A)fid, let X� u−→ Y � → M�(u) → X�[1] be a
triangle. For M ∈ A, by applying HomK∗(A)(M,−) to the triangle, we have
M�(u) ∈ K∗(A)fid. Therefore, K∗(A)fid is a triangulated full subcategory of K∗(A).
By Proposition 9.2, K∗,φ(A)fid = Kφ(A) ∩ K∗(A)fid is an épaisse subcategory of
K∗(A). According to Proposition 7.16, K∗(A)fid is a quotientizing subcategory of
K∗(A). In the case of K∗

A′(A)fid, similarly.

Definition 10.20. For ∗ = nothing, +,−, b, D∗(A)fid = K∗(A)fid/K∗,φ(A)fid and
D∗

A′(A)fid = K∗
A′(A)fid/K∗,φ(A)fid.

Proposition 10.21. Let A be an abelian category with enough injectives. Then
the following are equivalent for X � ∈ K+(A).

1. For any integer n1 ∈ Z there is n2 ∈ Z such that HomD(A)(Y �, X�[i]) = 0 for
all i > n2 and all complexes Y � ∈ K+(A) with Hj(Y �) = O for j < n1.

2. X � ∈ K+(A)fid.
3. There exists I � ∈ Kb(InjA) such that X � ∼= I � in D+(A).

Proof. 1 ⇒ 2. It is trivial.
2 ⇒ 3. Let n be an integer such that HomD(A)(M, X�[i]) = 0 for all i > n. We

take I� ∈ K+(InjA) which has a quasi-isomorphism X� → I� in K+(A). For i > n,
we have isomorphisms

HomD(A)(Z
i(I�)[−i],X �) ∼= HomK(A)(Z

i(I �), I �[i])
= 0.

This means that the canonical morphisms I i−1 → Zi(I �) is split epic, and Bi(I �) =
Zi(I �). Then σ≤nI� → I� is an isomorphism in K(A) and σ≤nI� ∈ Kb(InjA).

3 ⇒ 1. By Corollary 10.9, it is easy.

Corollary 10.22. Let A be an abelian category with enough injectives. Then we
have a triangle equivalent

Kb(InjA)
t∼= D+(A)fid.

Proposition 10.23. Let B be an additive full subcategory of an abelian category A
which is closed under direct summands, and K̃

b
(B) the triangulated full subcategory

of K−(B) consisting of objects which are isomorphic to an object of Kb(B) in K−(B).
Then K̃

b
(B) is an épaisse subcategory of K−(B).



46 JUN-ICHI MIYACHI

Proof. Let X � ∈ Kb(B), and Y � is direct summand of X � in K−(B). Then Y � is a
direct summand of X �⊕I �(Y �) in C−(B). Then we have a split exact sequence in
C−(B)

O → Y � → X �⊕I �(Y �) → Z� → O.

Since X� ∈ Kb(B), there is n ∈ Z such that we have a split exact sequence in C−(B)

O → τ≤nY � → τ≤nI�(Y �) → τ≤nZ� → O.

Since Hi(τ≤nI�(Y �)) = O for i �= n and Bi(τ≤nI�(Y �)) ∈ B, Hi(τ≤nY �) = O for i �= n

and Bi(τ≤nY �) ∈ B. Hence Y � ∼= σ>n−2Y
� in K−(B) with σ>n−2Y

� ∈ Kb(B).

11. Homotopy Limits

Throughout this section C is a triangulated category with arbitrary coproducts.

Definition 11.1. A triangulated full subcategory L of C is called localizing if
(L1) Every direct summand of an object in L is in L.

(L2) Every coproduct of objects in L is in L.

Lemma 11.2. Let L of C be a localizing subcategory, then C/L has arbitrary co-
products, and the quotient C → C/L preserves coproducts.

Proof. Let {XI}i∈I be a collection of objects of C. It suffices to show

1. Any collection of morphisms Xi
fi−→ Y in C/L can be lifted to a morphism∐

iXi
f−→ Y in C/L.

2. a morphism
∐

iXi
f−→ Y in C/L such that all Xi

qi−→
∐

iXi
f−→ Y = 0 in C/L,

then f = 0.

1. A morphism Xi
fi−→ Y in C/L is a diagram in C

X
′

i

si

��

f
′
i

��















Xi Y

where Xi → Xi → X
′′

i → TX
′

i is a triangle, with X ′′
i ∈ L. Thus we get a diagram∐

iX
′

i

si

��

f
′
i

		��
���

��
�

∐
iXi Y.

Since
∐

iXi →
∐

iXi →
∐

iX
′′

i → T
∐

iX
′

i is a triangle, we have a morphism∐
iXi

f−→ Y in C/L.

2. Given a morphism
∐

iXi
f−→ Y in C/L, it corresponds to a diagram∐

iXi

f ′

��		
		

		
		

Y

t

��
Y
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with t ∈ Φ(L). If the composite Xi →
∐

iXi → Y = 0 in C/L, then we have a
diagram in C

Xi
qi �� ∐

iXi

f ′

����
��

��
��

Y

t

��
Y ′

which corresponds to 0 in C/L. Then by Proposition 7.11 and Lemma 9.4, every

Xi
qi−→

∐
iXi

f ′

−→ Y ′ factors through Zi ∈ L. Thus f factorizes as∐
iXi

�� ∐
iZi

����
��

��
�� Y

t

��
Y ′.

Since L is localizing,
∐

iZi ∈ L and f = 0.

Corollary 11.3. Let A be an abelian category satisfying the condition Ab4. Then
D(A) has arbitrary coproducts.

Proof. According to Corollary 6.15, K(A) has arbitrary coproducts. For a collection

of quasi-isomorphisms X�
i

fi−→ Y �
i (i ∈ I), Hn(

∐
ifi) ∼=

∐
i Hn(fi) is isomorphic for

all n ∈ Z. Thus Kφ(A) is localizing, and Lemma 11.2 can be applied.

Definition 11.4. For a sequence {Xi → Xi+1}i∈N (resp., {Xi+1 → Xi}i∈N) of
morphisms in C, the homotopy colimit (resp., limit) of the sequence is the third
(resp., second) term of the triangle∐

i
Xi

1− shift−−−−−→
∐

i
Xi → hlim

−→
Xi → T

∐
i
Xi

(resp., T−1
∏

i
Xi → hlim

←−
Xi →

∏
i
Xi

1− shift−−−−−→
∐

i
Xi)

where the above shift morphism is the coproduct (resp., product) of Xi
fi−→ Xi+1

(resp., Xi+1
fi−→ Xi) (i ∈ N).

Exercise 11.5. In the category Ab, prove the following.

1. For a sequence of morphisms {Xi+1
fi−→ Xi}i∈N, if there is n ∈ N such that fi

are epimorphisms for all i ≥ n, then
∏

iXi
1− shift−−−−−→

∏
iXi is epic.

2. For a sequence of morphisms {Xi
fi−→ Xi+1}i∈N,

∐
iXi

1− shift−−−−−→
∐

iXi is
monic.

Lemma 11.6. The following hold.

1. Assume A satisfies the condition Ab3. For a sequence of morphisms {Xi
fi−→

Xi+1}i∈N, if there is n ∈ N such that fi are split monomorphisms for all
i ≥ n, then we have a split exact sequence

O →
∐

i
Xi

1− shift−−−−−→
∐

i
Xi → lim−→Xi → O.



48 JUN-ICHI MIYACHI

2. Assume A satisfies the condition Ab3*. For a sequence of morphisms {Xi+1
fi−→ Xi}i∈N, if there is n ∈ N such that fi are split epimorphisms for all i ≥ n,

then we have a split exact sequence

O → lim←−Xi →
∏

i
Xi

1− shift−−−−−→
∏

i
Xi → O.

Proof. 1, For any M ∈ A, we have a commutative diagram

HomA(
∐

iXi,M) 1− shift−−−−−→ HomA(
∐

iXi,M)��
��∏

i HomA(Xi, M) 1− shift−−−−−→
∏

i HomA(Xi, M).

By Exercise 11.5, the bottom horizontal morphism is epic.
2. Similarly.

Proposition 11.7. The following hold.
1. Assume A satisfies the condition Ab3. and X�

i → X�
i+1 a sequence of com-

plexes in C(A) satisfying that for each j ∈ Z there is n ∈ N such that
Xj

i → Xj
i+1 are split monomorphisms for all i ≥ n. Then we have an exact

sequence in C(A)

O →
∐

i
X �

i
1− shift−−−−−→

∐
i
X�

i → lim−→X �
i → O

which belongs to SC(A). In particular, lim−→X�
i
∼= hlim

−→
X �

i in K(A).

2. Assume A satisfies the condition Ab3*. and X �
i+1 → X �

i a sequence of com-
plexes in C(A) satisfying that for each j ∈ Z there is n ∈ N such that
Xj

i → Xj
i+1 are split epimorphisms for all i ≥ n. Then we have an exact

sequence in C(A)

O → lim←−X�
i →

∏
i
X�

i
1− shift−−−−−→

∏
i
X �

i → O

which belongs to SC(A). In particular, lim←−X�
i
∼= hlim

←−
X �

i in K(A).

Proof. 1. By Lemma 11.6, for any j we have a split exact sequence

O →
∐

i
Xj

i
1− shift−−−−−→

∐
i
Xj

i → lim−→Xj
i → O.

Then we have an exact sequence in C(A)

O →
∐

i
X�

i
1− shift−−−−−→

∐
i
X �

i → lim−→X�
i → O

which belongs to SC(A). The last assertion follows by Proposition 6.12.
2. Similarly.

Remark 11.8. The above lim−→X �
i and lim←−X�

i are the filtered colimit and the filtered
limit in C(A), but are not the filtered colimit and the filtered limit in K(A) (see
Lemma 16.17).

Remark 11.9. 1. If A satisfies the condition Ab5, then for a sequence {X �
i →

X �
i+1}i∈N of morphisms in D(A), we have exact sequences

O →
∐

i
Hn(X �

i) →
∐

i
Hn(X �

i) → Hn(hlim
−→

X �
i) → O

for all n ∈ N.
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2. If A satisfies the condition Ab5 and {X�
i → X�

i+1}i∈N a sequence of morphisms
in C(A), then by Proposition 2.25, 3 we have an exact sequence in C(A)

O →
∐

i
X �

i →
∐

i
X �

i → lim−→X �
i → O

and we have a quasi-isomorphism

hlim
−→

X �
i → lim−→X�

i.

3. Assume A satisfies the condition Ab4*, and let {X �
i+1 → X �

i}i∈N be a sequence
of morphisms in D(A) satisfying that for any n ∈ Z there is k ∈ N such that
Hn(X �

i+1) ∼= Hn(X�
i) for all i > k. Then we have exact sequences

O → Hn(hlim
←−

X �
i) →

∏
i
Hn(X �

i) →
∏

i
Hn(X �

i) → O

for all n ∈ N.

Proposition 11.10. For an abelian category A, the following hold.
1. If A satisfies the condition Ab4 with enough projectives, then every object of

K(A) is quasi-isomorphic to a complex P � of projectives with HomK(A)(P �,
Kφ(A)) = 0.

2. If A satisfies the condition Ab4* with enough injectives, then every object of
K(A) is quasi-isomorphic to a complex P � of injectives with HomK(A)(K

φ(A),
I �) = 0.

Proof. 1. For a complex X � ∈ K(A), we have morphisms of complexes σ≤iX � →
σ≤i+1X� → X �. According to Lemma 10.10, there is P �

i ∈ K−(ProjA) which has a
quasi-isomorphism P �

i → σ≤iX �, and we have a commutative diagram in K(A)

P �
i −−−−→ P �

i+1� �
σ≤iX � −−−−→ σ≤i+1X �

By Remark 11.9, we have a quasi-isomorphism

hlim
−→

P �
i → hlim

−→
σ≤iX

�.

By Proposition 11.7, hlim
−→

σ≤iX� ∼= lim−→σ≤iX � = X� in K(A). By the construction,

hlim
−→

P �
i is a complex of projectives. Since we have an exact sequence∏

i
HomK(A)(TP �

i , K
φ(A)) → HomK(A)(P �,Kφ(A)) →

∏
i
HomK(A)(TP �

i , K
φ(A)),

we have HomK(A)(P �, Kφ(A)) = 0 by Lemma 10.8.
2. Similarly.

Definition 11.11. 1. In the case that A satisfies the condition Ab4 with enough
projectives, we define the triangulated full subcategory Ks(ProjA) of K(A) con-
sisting of complexes P � of projectives such that HomK(A)(P �, Kφ(A)) = 0. Then
(Ks(ProjA),Kφ(A)) is a stable t-structure in K(A).

2. In the case that A satisfies the condition Ab4* with enough injectives, we
define the triangulated full subcategory Ks(InjA) of K(A) consisting of complexes
I � of injectives such that HomK(A)(K

φ(A), I�) = 0. Then (Kφ(A),Ks(InjA)) is a
stable t-structure in K(A).

They are often called K-projective complexes (resp., K-injective complexes).
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Proposition 11.12. The following hold.
1. If A satisfies the condition Ab4 with enough projectives, then we have an

isomorphism

HomK(A)(P �, Y �) ∼= HomD(A)(P �, Y �)

for P � ∈ Ks(ProjA), Y � ∈ K(A).
2. If A satisfies the condition Ab4* with enough injectives, then we have an

isomorphism

HomK(A)(X�, I�) ∼= HomD(A)(X �, I �)

for X � ∈ K(A), I� ∈ Ks(InjA).

Theorem 11.13. The following hold.
1. If A satisfies the condition Ab4 with enough projectives, then we have a tri-

angle equivalence

Ks(ProjA)
t∼= D(A).

2. If A satisfies the condition Ab4* with enough injectives, then we have a tri-
angle equivalence

Ks(InjA)
t∼= D(A).

Proof. 1. By Proposition 11.10, (Ks(ProjA),Kφ(A)) is a stable t-structure in K(A).
According to Proposition 9.16, Remark 9.17, we get the statement.

2. Similarly.

Remark 11.14 (Set-Theoretic Remark 2). Conversely, in the case that A satisfies
the condition Ab4 with enough projectives, we can define D−(A) = K−(ProjA), and
D(A) = Ks(ProjA). Then we can bypass Remark 7.7.

Similarly, in the case that A satisfies the condition Ab4* with enough injectives,
we can define D+(A) = K+(InjA), and D(A) = Ks(InjA).

Proposition 11.15. The following hold.

1. Let C be a triangulated category with coproducts. For a sequence {Xi
fi−→

Xi+1}i∈N, if there is n ∈ N such that fi are split monomorphisms for all
i ≥ n, then the structural morphism

∐
iXi → hlim

−→
Xi is a split epimorphism.

2. Let C be a triangulated category with products. For a sequence {Xi+1
fi−→

Xi}i∈N, if there is n ∈ N such that fi are split epimorphisms for all i ≥ n,
then the structural morphism hlim

←−
Xi →

∏
iXi is a split monomorphism.

Proof. 1. For any M ∈ C and n ∈ N, we have a commutative diagram

HomC(
∐

iT
nXi,M) 1− shift−−−−−→ HomC(

∐
iT

nXi, M)��
��∏

i HomC(TnXi, M) 1− shift−−−−−→
∏

i HomC(TnXi,M).

Then by Exercise 11.5.2, HomC(
∐

iT
nXi,M) 1− shift−−−−−→ HomC(

∐
iT

nXi, M) is epic,

and then Tn
∐

iXi
1− shift−−−−−→ Tn

∐
iXi is split monic. Therefore, hlim

−→
Xi → T

∐
iXi =

0, and hence
∐

iXi → hlim
−→

Xi is split epic.
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2. Similarly.

Lemma 11.16. Let C be a triangulated category with coproducts. For a sequence
{Xi

fi−→ Xi+1}i∈N where Xi = X and fi = 1X for all i, we have an isomorphism in
C

hlim
−→

Xi
∼= X.

Proof. Let
∐

iXi
p−→

∐
iXi

q−→ hlim
−→

Xi
r−→

∐
iTXi be a triangle, and α =

∑
i(1X)i :∐

iXi → X. By easy calculation, the following hold.
(a) αp = 0.
(b) If a morphism φ :

∐
iXi → Y satisfies φp = 0, then there is a unique f : X →

Y such that φ = fα.
By the property of hlim

−→
and the above, there exist h : X → hlim

−→
Xi and k :

hlim
−→

Xi → X such that α = kq and q = hα. Since q = hkq and α = khα, we have

hk = 1 and kh = 1 by (b) and Proposition 11.15.

Proposition 11.17. Let C be a triangulated category with coproducts. Let e : X →
X be a morphism in C such that e2 = e. Then e splits in C.

Proof. We consider three sequences
(A) X

e−→ X
e−→ . . . .

(B) X
1−e−−→ X

1−e−−→ . . . .

(C) X⊕X
[ 0 0
0 1 ]

−−−→ X⊕X
[ 0 0
0 1 ]

−−−→ . . . .
Then we have an isomorphism α =

[
e 1−e

1−e e

]
: (A)⊕(B) → (C) of sequences. Thus

hlim
−→

(C) ∼= Y ⊕ Z in C, where Y = hlim
−→

(A), Z = hlim
−→

(B). For a sequence (C),
we have a commutative diagram∐

i(X ⊕ X)i
1−shift−−−−→

∐
i(X ⊕X)i −−−−→ hlim

−→
(C)��

��

(
∐

iXi)⊕ (
∐

iXi)
1⊕(1−shift)−−−−−−−→ (

∐
iXi)⊕ (

∐
iXi).

By Lemma 11.16, we have hlim
−→

(C) ∼= X in C. On the other hand, we have a
commutative diagram

(
∐

iXi)⊕ (
∐

iXi)
(1−shift)⊕(1−shift)−−−−−−−−−−−−→ (

∐
iXi)⊕ (

∐
iXi)

β−−−−→ Y ⊕Z�α

�α

�γ

∐
i(X ⊕X)i

1−shift−−−−→
∐

i(X ⊕X)i
i(0 1)i−−−−−−→ X

where β = [ a 0
0 b ] and γ = [ ε η ] are isomorphisms. According to Proposition 11.15,

(0 1) and β = [ a 0
0 b ] are epic, then a and b are epic. Since (1 − e)εb = (1 −

e)(0 1) [ 1−e
e ] = 0, we have (1 − e)ε = 0. Similarly, we have eη = 0. Hence we have

a morphism δ : X → Y such that εδ = e and δε = 1Y .

Corollary 11.18. Let L be a triangulated full subcategory L of C. If L satisfies
the condition
(L2) every coproduct of objects in L is in L,
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then L is a localizing subcategory of C.

Corollary 11.19. Let R be a commutative complete local ring, A a finite R-
algebra. Then Db(mod A) is a Krull-Schmidt category.

Proof. For a complex Y � ∈ Db(modA), we may assume that Hm(Y �) �= 0, Hn(Y �) �=
0, and Hi(Y �) = 0 for i < m, n < i for some m < n. We define TL(Y �) = n−m. For
complexes X �, Y � ∈ Db(modA), by induction on the lexicographic order (TL(X�),
TL(Y �)), we show that HomDb(mod A)(X �, Y �) is a finitely generated R-module. Let
Y �

1 = σ≤n−1(Y �) and Y �
2 = σ>n−1(Y �), then we have a triangle in Db(mod A)

Y �
1 → Y � → Y �

2 → TY �
1 .

Then we have an exact sequence

HomDb(mod A)(X
�, Y �

1) → HomDb(mod A)(X
�, Y �) → HomDb(mod A)(X

�, Y �
2).

By the assumption, HomDb(mod A)(X�, Y �
1) and HomDb(mod A)(X �, Y �

2) are finitely
generated R-modules. Then HomDb(mod A)(X �, Y �) is a finitely generated R-module.
Similarly, for a triangle σ≤n−1(X �) → X � → σ>n−1(X �) → Tσ≤n−1(X �), we have
the same result. In particular, EndDb(mod A)(X

�) is a semiperfect ring. For an
idempotent e ∈ EndDb(mod A)(X

�), by Example 10.14, we may consider an idem-
potent in Db

c (Mod A) ⊂ Db(Mod A). By Proposition 11.17, there exist a complex
Y � ∈ Db(Mod A) and morphisms p : X� → Y �, q : Y � → X� such that qp = e and
pq = 1Y � . Since every Hi(Y �) is a direct summand of Hi(X�), Y � ∈ Db

c (ModA).
According to Proposition 3.7, we complete the proof.

12. Derived Functors

Throughout this section, A, B and C are abelian categories.

12.1. Derived Functors.

Definition 12.1. A triangulated full subcategory K∗(A) of is called a quotientizing
subcategory (often called localizing subcategory) if the canonical functor

K∗(A)/K∗,φ(A) → D(A)

is fully faithful, where K∗,φ(A) = Kφ(A) ∩ K∗(A). If K∗(A) is a quotientizing
subcategory of K(A), we denote by D∗(A) the quotient category K∗(A)/ K∗,φ(A)
and by Q∗

A : K∗(A) → D∗(A) the canonical quotient functor.

Definition 12.2 (Right Derived Functor). Let K∗(A) be a quotientizing subcate-
gory of K(A) and F : K∗(A) → K(B) a ∂-functor. The right derived functor of F is
a ∂-functor

R∗F : D∗(A) → D(B)

together with a functorial morphism of ∂-functors

ξ ∈ ∂ Mor(QBF,R∗FQ∗
A)

with the following property:
For G ∈ ∂(D∗(A),D(B)) and ζ ∈ ∂ Mor(QBF,GQ∗

A), there exists a unique mor-
phism η ∈ ∂ Mor(R∗F, G) such that

ζ = (ηQ∗
A)ξ.
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In other words, we can simply write the above using functor categories. For
triangulated categories C,C′, the ∂-functor category ∂(C, C′) is the category (?)
consisting of ∂-functors from C to C ′ as objects and ∂-functorial morphisms as
morphisms. Then we have

∂ Mor(QBF,−Q∗
A) ∼= ∂ Mor(R∗F,−)

as functors from ∂(D∗(A),D(B)) to Set (See Lemma 1.8).

Definition 12.3. Let K∗(A) be a quotientizing subcategory of K∗(A) and F :
K∗(A) → K(B) a ∂-functor. When F has a right derived functor R∗F : D∗(A) →
D(B), we define Ri F = Hi R∗F : D∗(A) → B (i ∈ Z).

Proposition 12.4. Let K∗(A) be a quotientizing subcategory of K(A) and F :
K∗(A) → K(B) a ∂-functor. Assume F has a right derived functor R∗F : D∗(A) →
D(B). Then for any exact sequence O → X� → Y � → Z � → O in C(A) we have a
long exact sequence

. . . → Ri F (X �) → Ri F (Y �) → Ri F (Z�) → Ri+1 F (X �) → . . . .

Proof. By Proposition 10.4, it is easy.

Theorem 12.5 (Existence Theorem). Let K∗(A) be a quotientizing subcategory of
K(A) and F : K∗(A) → K(B) a ∂-functor. Assume there exists a triangulated full
subcategory L of K∗(A) such that

(a) for any X � ∈ K∗(A) there is a quasi-isomorphism X � → I � with I� ∈ L,
(b) QBF (Lφ) = {O},

where Lφ = Kφ(A) ∩ L. Then there exists the right derived functor (R∗F, ξ) such
that ξI : QBFI� → R∗FI� is a quasi-isomorphism for I� ∈ L.

Proof. Let E : L → K∗(A) be the embedding functor, then by the assumption (a)
and Proposition 7.16 the canonical functor E : L/Lφ → D∗(A) is an equivalence.
Let J : D∗(A) → L/Lφ be a quasi-inverse of E. By the assumption (b) and
Proposition 8.7 there is a ∂-functor F : L/Lφ → D(B) such that QBFE = FQL,
where QL : L → L/Lφ is the canonical quotient. Put R∗F = FJ . Since Q∗

AE =
EQL, we have

∂ Mor(QBFE,GQ∗
AE) ∼= ∂ Mor(FQL,GEQL)

∼= ∂ Mor(FJE,GE)
∼= ∂ Mor(FJ, G).

It remains to show that

∂ Mor(QBF,GQ∗
A) ∼= ∂ Mor(QBFE, GQ∗

AE) (φ �→ φE).

Let φ ∈ ∂ Mor(QBF,GQ∗
A) with φE = 0. For any X � ∈ K∗(A) there exists I� ∈ L

which has a quasi-isomorphism s : X� → I �. Then φX = (GQ∗
As)−1φIQBFs = 0,

and hence φ = 0. Given ψ ∈ ∂ Mor(QBFE, GQ∗
AE), for any X � ∈ K∗(A), let

φX = (GQ∗
As)−1ψIQBFs for some quasi-isomorphism s : X � → I �, with I � ∈ L.

For another quasi-isomorphism s′ : X � → I ′�, by the assumption (a), we have a
commutative diagram

X � s−−−−→ I�

s′
� �t′

I′�
t−−−−→ I ′′�
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where all morphisms are quasi-isomorphisms and I ′′� ∈ L. Then we have

(GQ∗
As)−1ψIQBFs = (GQ∗

At′s)−1ψI′′QBFt′s

= (GQ∗
Ats′)−1ψI′′QBFts′

= (GQ∗
As′)−1ψI′QBFs′.

It is not hard to see that φ ∈ ∂ Mor(QBF,GQ∗
A). The last assertion is easy to

check.

Corollary 12.6. Assume that there exists an additive subcategory I of A such that
(a) every X ∈ A has a monomorphism to an object in I.
(b) for an exact sequence O → X → Y → Z → O in A with X ∈ I, Y ∈ I if and

only if Z ∈ I,
(c) for an exact sequence O → X → Y → Z → O in A with X, Y,Z ∈ I, then

O → FX → FY → FZ → O is exact in B.
For any additive functor F : A → B, R+F : D+(A) → D(B) exists.

Proof. Let L = K+(I), then it is easy to see that L satisfies the conditions of
Theorem 12.5.

Proposition 12.7. Let K∗∗(A) ⊂ K∗(A) be quotientizing subcategories of K(A)
and F : K∗(A) → K(B) a ∂-functor. Assume K∗(A) has a triangulated full subcat-
egory L such that

(a) for any X � ∈ K∗(A), there exists a quasi-isomorphism X � → I � with I� ∈ L,
(b) for any X � ∈ K∗∗(A), there exists a quasi-isomorphism X � → I� with I � ∈

L ∩ K∗∗(A), and
(c) QBF (Lφ) = {O},

where Lφ = Kφ(A) ∩ L. Then both F and F |K∗∗(A) have the right derived func-
tors (R∗F, ξ) and (R∗∗(F |K∗∗(A)), ζ), respectively, and the canonical ∂-functorial
morphism

φ : R∗∗(F |K∗∗(A)) → R∗F |K∗∗(A)

is an isomorphism.

Proof. By Theorem 12.5 both F and F |K∗∗(A) have the right derived functors
(R∗F, ξ) and (R∗∗(F |K∗∗(A)), ζ), respectively, and we have a unique ∂-functorial
morphism

φ : R∗∗(F |K∗∗(A)) → R∗F |K∗∗(A)

such that ξ|K∗∗(A) = (φQ∗∗
A )ζ . For any I � ∈ L ∩ K∗∗(A), by Theorem 12.5 both ξI

and ζI are isomorphisms, so that φQI is an isomorphism. Thus, since by assumption
(b), the canonical functor Q : L∩K∗∗(A) → D∗∗(A) is dense, φ is an isomorphism.

Proposition 12.8. Let K∗(A) be a quotientizing subcategory of K(A) and F :
K∗(A) → K(B) a ∂-functor. Let K†(B) be a quotientizing subcategory of K(B)
and G : K†(B) → K(C) a ∂-functor. Assume

(a) K∗(A) has a triangulated full subcategory L for which the assumptions 1, 2 of
Theorem 12.5 are satisfied,

(b) K†(B) has a triangulated full subcategory M for which the assumptions 1, 2
of Theorem 12.5 are satisfied, and

(c) F (K∗(A)) ⊂ K†(B) and F (L) ⊂ M.
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Then F, G and GF have the right derived functors (R∗F, ξ), (R†G, ζ) and
(R∗(GF ), η) with R∗F (D∗(A)) ⊂ C†(B), and the canonical homomorphism

φ : R∗(GF ) → R†G ◦ R∗F

is an isomorphism.

Proof. By Theorem 12.5 F and G have the right derived functors (R∗F, ξ) and
(R†G,ζ), respectively. Let X � ∈ L be acyclic. Then, since Q(F (X �)) = 0, F (X �)
is acyclic and Q(G(F (X �))) = 0. Thus, again by Theorem 12.5 GF has a right
derived functor (R∗(GF ), η). Also, for any X� ∈ D∗(A), since we have a quasi-
isomorphism X � → I � with I � ∈ L, R∗F (X �) ∼= R∗F (Q(I �)) ∼= Q(F (I �)) ∈ D†(B).
Thus by Theorem 12.5 we have a unique homomorphism of ∂-functors

φ : R∗(GF ) → R†G◦R∗F

such that (R†Gξ)(ζF ) = (φQ)η. Let I� ∈ L. Then ξI , ζFI and ηI are isomorphisms,
so that φQI is an isomorphism. Thus φ is an isomorphism, because Q : L → D∗(A)
is dense

12.2. Way-out Functors.

Definition 12.9 (Way-out Functor). Let A,B be abelian categories, A′ a thick
abelian full subcategory of A. Let K∗(A) be a quotientizing subcategory of K(A).
A ∂-functor F : D∗

A′(A) → D(B) is called way-out right (resp., way-out left) provided
that for any n1 ∈ Z there exists n2 ∈ Z such that if X � ∈ D∗(A) is a complex with
Hi(X �) = O for all i < n2 (resp., i > n2), then Hi(FX�) = O for all i < n1 (resp.,
i > n1).

Moreover, F is called way-out in both directions if F is way-out right and way-out
left.

Lemma 12.10. For a complex X � ∈ C(A), we have triangles in D(A)
1.

τ≥n−1X
� → τ≥nX � → Xn[−n] → τ≥n−1X

�[1].

2.

Hn(X �)[−n] → σ>n−1X
� → σ>nX � → Hn(X �)[1 − n].

Proof. By 10.6, we have an exact sequence

O → Y � → σ>n−1X
� → σ>nX � → O,

where Y � : Y n−1 → Y n = Im dn−1
X → Kerdn

X . Then it is easy to see Y � ∼=
Hn(X �)[−n].

Proposition 12.11. Let A,B be abelian categories, A′ a thick abelian full subcat-
egory of A. Let F ∗,G∗ : D∗

A′(A) → D(B) be ∂-functors, and η∗ ∈ ∂ Mor(F ∗,G∗),
where ∗ = nothing, +,−, b. Then the following hold.

1. If ηb(X) are isomorphisms for all X ∈ A′, then ηb is an isomorphism.
2. Assume that F and G are way-out right. If η+(X) are isomorphisms for all

X ∈ A′, then η+ is an isomorphism.
3. Assume that F and G are way-out in both directions. If η(X) are isomor-

phisms for all X ∈ A′, then η is an isomorphism.
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4. Let I be a collection of objects of A′ such that every X ∈ A′ admits a
monomorphism to an object of I. Assume that F and G are way-out right.
If η∗(I) are isomorphisms for all I ∈ I, then η∗(X) are isomorphisms for all
X ∈ A′.

Proof. 1. Let X � ∈ Db(A). For n � 0, σ>nX� = O, and then η(σ>nX�) is an
isomorphism. By Lemma 12.10, η(σ>n−1X

�) is an isomorphism. Since X � ∈ Db(A),
we get the statement.

2. Let X� ∈ D+(A). For any n ∈ Z, we show that Hn(η(X �)) is an isomorphism.
Put n1 = n + 1. Then there exists n2 ∈ Z such that if Y � ∈ D∗(A) is a complex
with Hi(Y �) = O for all i < n2, then Hi(FY �) = O and Hi(GY �) = O for all i < n1.
Since Hi(σ>n2X

�) = O for i < n1, we have

Hn(Fσ>n2X
�) = Hn−1(Fσ>n2X

�) = O,

Hn(Gσ>n2X
�) = Hn−1(Gσ>n2X

�) = O.

Considering a triangle σ≤n2X
� → X� → σ>n2X

� → σ≤n2X
�[1], we have a commu-

tative diagram

Hn(Fσ≤n2X
�) ∼−−−−→ Hn(FX �)

�
� �

Hn(Gσ≤n2X
�) ∼−−−−→ Hn(GX �).

where all horizontal arrows are isomorphisms. By 1, the left vertical arrow are an
isomorphism, and hence η(Hn(X�)) is an isomorphism.

3. As in 2, for any X � ∈ D(A), η(σ>0X �) is an isomorphism. Considering
σ≤0X

� → X� → σ>0X
� → σ≤0X

�[1], η(X�) is an isomorphism.
4. For X ∈ A′ , by the dual of Lemma 10.10, there is a resolution I� with each

I i ∈ I. By replacing σ by τ in 1 and 2, we have the statement.

Proposition 12.12. Let A,B be abelian categories, A′,B′ thick abelian full sub-
categories of A,B, respectively. Let F∗ : D∗

A′(A) → D(B) be a ∂-functor, where ∗ =
nothing, +,−, b. Then the following hold.

1. If Fb(X) ∈ DB′(B) for all X ∈ A′, then F b(X) ∈ DB′(B) for all X � ∈ Db
A′(A).

2. Assume that F and G are way-out right. If F b(X) ∈ DB′(B) for all X ∈ A′,
then F b(X) ∈ DB′(B) for all X � ∈ D+

A′(A).
3. Assume that F and G are way-out in both directions. If Fb(X) ∈ DB′(B) for

all X ∈ A′, then Fb(X) ∈ DB′(B) for all X � ∈ DA′(A).
4. Let I be a collection of objects of A′ such that every X ∈ A′ admits a

monomorphism to an object of I. Assume that F and G are way-out right.
If F (I) ∈ DB′(B) for all I ∈ I, then F (X) ∈ DB′(B) for all X ∈ A′.

Proof. The same as the proof of Proposition 12.12 (left to the reader).

13. Double Complexes

Throughout this section, A is an abelian category.

Definition 13.1 (Double Complex). A double complex C�� is a bigraded object
(Cp,q)p,q∈Z of A together with dp,q

I : Cp,q → Cp+1,q and dp,q
II : Cp,q → Cp,q+1 such
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that

C �q = (Cp,q, dp,q
I : Cp,q → Cp+1,q)

Cp� = (Cp,q, dp,q
II : Cp,q → Cp,q+1)

are complexes satisfying dp,q+1
I dp,q

II + dp+1,q
II dp,q

I = 0.
A morphism f of double complexes X �� to Y �� is a collection of morphisms fp,q :

Xp,q → Y p,q such that f �q : X�q → Y �q and fp� : Xp� → Y p� are morphisms of
complexes for all p, q ∈ Z.

We denote by C2(A) the categories of double complexes of A. Auto-equivalences
TI, TII : C2(A) → C2(A) are called the translations if (TIX

��)p,q = Xp+1,q and
(TId# X)p,q

= −dp+1,q
# X and (TIIX

��)p,q = Xp,q+1 and (TIId# X)p,q = −dp,q+1
# X for any complex

X �� = (Xp,q, dp,q
I X , dp,q

II X), where # = I, II.
Moreover, an r-tuple complex C�r is an r-tuple graded object (Cp)p∈Zr of A

together with dp
i : Cp → Cp+ei (1 ≤ i ≤ r) such that

d2
i = 0 (1 ≤ i ≤ r),

didj + djdi = 0 for all i, j,

where ei = (0, . . . , 0, 1, 0, . . . , 0)
ith component

.

Proposition 13.2. Let CI(A) (resp., CII(A)) be the full subcategory of C2(A) con-
sisting of complexes X�� such that Xp,q = O for all q �= 0 (resp., p �= 0). Then we
have C(A) ∼= CI(A) ∼= CII(A) and C2(A) ∼= C(CI(A)) ∼= C(CII(A)). In particular,
C2(A) is an abelian category.

Proof. We define a functor FI : C2(A) → C(CI(A)) as follows. For any double
complex X �� = (Xp,q, dp,q

I X , dp,q
II X), FI(Xp,q, dp,q

I X , dp,q
II X) = (X �,q , d�,q

IIX) where X�,q =
(Xp,q, (−1)qdp,q

I X). For a morphism f : X�� → Y ��, FI(f)p,q = fp,q. Then it is easy
to see that FI is an equivalence.

By the above, we can deal with C2(A) as C(CI(A)) or C(CII(A)).

Definition 13.3 (Truncations). For a double complex X �� = (Xp,q, dp,q
I , dp,q

II ), we
define the following truncations:

(σI
>nX��)p,q =




O if p < n

Imdp,q
I if p = n

Xp,q if p > n

(σI
≤nX ��)p,q =




Xp,q if p < n

Kerdp,q
I if p = n

O if p > n

(σII
>nX��)p,q =




O if q < n

Imdp,q
II if q = n

Xp,q if q > n

(σII
≤nX ��)p,q =




Xp,q if q < n

Kerdp,q
II if q = n

O if q > n

(τ I
≤nX��)p,q =

{
Xp,q if p ≤ n

O if p > n
(τ I

≥nX ��)p,q =

{
O if p < n

Xp,q if p ≥ n

(τ II
≤nX��)p,q =

{
Xp,q if q ≤ n

O if q > n
(τ II

≥nX ��)p,q =

{
O if q < n

Xp,q if q ≥ n

Lemma 13.4. For a double complex X�� = (Xp,q, dI, dII), the following hold.
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1. We have exact sequences in C2(A)

O → σ#
≤nX�� → X�� → σ#

>nX �� → O

for all n ∈ Z with # = I, II.
2. We have exact sequences in C2(A)

O → τ#
≥nX�� → X�� → τ#

≤n−1X
�� → O

for all n ∈ Z with # = I, II.

Definition 13.5 (Total Complexes). For a double complex X �� = (Xp,q, dp,q
I , dp,q

II ),
we define the total complexes

Tot C �� = (Xn, dn), where Xn =
∐

p+q=n
Cp,q, dn =

∐
p+q=n

dp,q
I + dp,q

II

∧
TotC�� = (Y n, dn), where Y n =

∏
p+q=n

Cp,q, dn =
∏

p+q=n
dp,q
I + dp,q

II .

Moreover, for an r-tuple complex X �r = (Xp, dp
i ) (1 ≤ i ≤ r), we define the total

complexes

Tot C �r = (Xn, dn), where Xn =
∐

|p|=n
Cp, dn =

∐
|p|=n

r∑
i=1

dp
i

∧
TotC�r = (Y n, dn),where Y n =

∏
|p|=n

Cp, dn =
∏

|p|=n

r∑
i=1

dp
i ,

where |p| = |(p1, . . . , pr)| = p1 + . . . + pr.

Lemma 13.6. The following hold.
1. If A satisfies the condition Ab4, then the functor Tot : C2(A) → C(A) pre-

serves translations, exact sequences and coproducts.

2. If A satisfies the condition Ab4*, then the functor
∧

Tot : C2(A) → C(A)
preserves translations, exact sequences and products.

Lemma 13.7. For a double complex X�� = (Xp,q, dI, dII), the following hold.
1. If Xp,q = O for q < m,n < q for m ≤ n and X�q are acyclic complexes in

C(A) for all q, then TotX �� is acyclic in C(A) .
2. If Xp,q = O for q < m, n < q for m ≤ n and Xp� are acyclic complexes in

C(A) for all p, then TotX�� is acyclic in C(A) .
3. Assume A satisfies the condition Ab4. If Xp,q = O for q > n and X �q are

acyclic complexes in C(A) for all q, then TotX �� is acyclic in C(A) .
4. Assume A satisfies the condition Ab4*. If Xp,q = O for q < n and X �q are

acyclic complexes in C(A) for all q, then
∧

TotX �� is acyclic in C(A) .
5. Assume A satisfies the condition Ab5. If Xp,q = O for q < n and Xp� are

acyclic complexes in C(A) for all p, then TotX �� is acyclic in C(A) .
6. Assume A = ModA for a ring A. If Xp,q = O for q > n and Xp� are acyclic

complexes in C(A) for all p, then
∧

TotX �� is acyclic in C(A) .

Proof. 1. Let nX = n − m. By Lemma 13.4, we have an exact sequence in C2(A)

O → τ II
≥n−1X

�� → X �� → τ II
≤nX �� → O.

Then by Lemma 13.6, we have the exact sequence in C(A)

O → Tot τ II
≥n−1X

�� → Tot X�� → X�n[−n] → O.
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By the assumption of induction on nX , Tot τ II
≥n−1X

�� is acyclic. Then TotX�� is
acyclic because X�n[−n] is acyclic.

2. Let nX = n − m. By Lemma 13.4, we have an exact sequence in C2(A)

O → σII
≤n−1X

�� → X �� → σII
>n−1X

�� → O.

Then by Lemma 13.6, we have the exact sequence in C2(A)

O → TotσII
≤n−1X

�� → TotX �� → TotσII
>n−1X

�n → O.

By the assumption of induction on nX , TotσII
≤n−1X

�� is acyclic. It is easy to see
that TotσII

>n−1X
�n ∼= M�(1X�n)[−n] is acyclic. Then TotX �� is acyclic.

3. By Lemma 13.4, we have the canonical morphisms in C2(A)

τ II
≥−rX

�� fr−→ τ II
≥−(r+1)X

��,

which are term-split monomorphisms for all p, q. Since Tot fr : Tot τ II
≥−rX

�� →
Tot τ II

≥−(r+1)X
�� is term-split monomorphisms in A, by Proposition 11.7, we have

hlim
−→

Tot τ II
≥−rX

�� ∼= lim−→Tot τ II
≥−rX

�� ∼= TotX��.

By 1, Tot τ II
≥−rX

�� is acyclic for all r. Then hlim
−→

Tot τ II
≥−rX

�� is acyclic, and hence

so is Tot X ��.
4. Dual of 3.
5. By Lemma 13.4, we have the canonical morphisms in C2(A)

σII
≤rX

�� gr−→ σII
≤r+1X

��.

By Exercise 11.5, we have an exact sequence in C(A)

O →
∐

r
Tot σII

≤rX
�� →

∐
r
TotσII

≤rX
�� → lim−→TotσII

≤rX
�� → O.

Then we have

hlim
−→

TotσII
≤rX

�� ∼= lim−→TotσII
≤rX

�� ∼= TotX��.

By 2, TotσII
≤rX

�� is acyclic for all r. Then hlim
−→

TotσII
≤rX

�� is acyclic, and hence

so is TotX ��.
6. Dual of 5.

Definition 13.8. We define an embedding functor emI : C(A) → C2(A) as follows.
For a complex X � ∈ C(A),

emI(X �)p,q =

{
Xp if q = 0
O othewise.

Definition 13.9 (Proper Exact). An exact sequence O → X� f−→ Y � g−→ Z � → O
in C(A) is called proper exact if the induced sequence O → Z�(X�) → Z�(Y �) →
Z�(Z�) → O is also exact. In this case, f (resp., g) is called a proper monomorphism
(resp., a proper epimorphism).

A complex X � ∈ C(A) is called a proper projective complex (resp., a proper
injective complex) if

X � ∼=
⊕

n∈Z
Pn[−n]⊕

⊕
n∈Z

M�(1Qn)[−n − 1]

where P n, Qn are projective (resp., injective) objects of A.
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Lemma 13.10. For a complex Z� ∈ C(A), the following hold.
1. M � is proper projective if and only if for every proper epimorphism g : X � →

Y � in C(A), HomC(A)(M �, g) is surjective.
2. M � is proper injective if and only if for every proper monomorphism f : X � →

Y � in C(A), HomC(A)(f, M �) is surjective.

Proof. 1. If M � is proper projective, then it suffices to check the case that M � =
P [−n] or M�(1P )[−n], where P is a projective object of A, n ∈ Z. For any proper
epimorphism g : X � → Y �, we have commutative diagrams

HomC(A)(P [−n],X �)
HomC(A)(P [−n],g)
−−−−−−−−−−−−→ HomC(A)(P [−n], Y �)��

��

HomA(P, Zn(X�))
HomA(P,Zn(g))−−−−−−−−−−→ HomA(P, Zn(Y �)),

HomC(A)(M
�(1P )[−n], X �)

HomC(A)(M
�(1P )[−n],g)−−−−−−−−−−−−−−−→ HomC(A)(M

�(1P )[−n], Y �)��
��

HomA(P, Xn−1)
HomA(P,gn−1)−−−−−−−−−−→ HomA(P,Y n−1).

Since P is projective, the bottom arrows of the above diagrams are surjective. Then
the top arrows are also surjective. Conversely, let M � be a complex satisfying the
surjective condition. For any epimorphism g : X → Y in A, we have a commutative
diagram

HomC(A)(M �,X[−n])
HomC(A)(M

�,g[−n])
−−−−−−−−−−−−−→ HomC(A)(M �, Y [−n])��

��

HomA(Cn(M �),X)
HomA(Cn(M �),g)−−−−−−−−−−−→ HomA(Cn(M �), Y ).

Since g[−n] : X[−n] → Y [−n] is proper epic, the top arrow is surjective. Then
Cn(M �) are projective objects of A. It is easy to see that

M � ∼=
⊕

n∈Z
M�(pn)[−n − 1],

where pn : Cn(M �) → Bn(M �) are the canonical epimorphisms. We have a commu-
tative diagram

HomC(A)(M
�(pn),M�(1X))

HomC(A)(M
�(pn),M�(g))−−−−−−−−−−−−−−−→ HomC(A)(M

�(pn),M�(1X))��
��

HomA(Bn(M �),X)
HomA(Bn(M �),g)−−−−−−−−−−−→ HomA(Bn(M �), Y ).

Since M�(pn) is proper projective, the top arrow is surjective, and then the bottom
arrow is surjective. Therefore Bn(M �) is a projective object of A. Hence M � is
proper projective.

2. Similarly.

Lemma 13.11 (Proper Resolutions). Assume that A has enough projectives (resp.
injectives). Given a complex M � ∈ C(A), there are proper projective complexes
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(resp., proper injective complexes) X �n (n ≥ 0) which has a proper projective reso-
lution (resp., a proper injective resolution) in C(A)

. . . → X�−1 → X �0 → M � → O

(resp., O → M � → X�0 → X �1 → . . . ).

Proof. For a complex M � ∈ C(A), we have exact sequences in C(A)

O → Z�(M �) → M � → B�(M �)[1] → O

O → B�(M �) → Z�(M�) → H�(M �) → O.

For each Bn(M �), there is a projective object Qn which has a epimorphism Qn →
Bn(M �). Then we have an epimorphism

⊕
n∈Z

M�(1Qn)[−n] → B�(M �)[1] and
its lift

⊕
n∈Z

M�(1Qn)[−n] → M �. For each Hn(M �), there is a projective ob-
ject Pn which has a epimorphism Pn → Hn(M �). Then we have a morphism⊕

n∈Z
Pn[−n] → B�(M �) and its lift

⊕
n∈Z

Pn[−n] → Z�(M �) → M �. Then it is
easy to see that

⊕
n∈Z

P n[−n]⊕
⊕

n∈Z
M�(1Qn)[−n] → M � is proper epimorphism.

Then by induction we complete the proof.

The above proper resolution . . . → X �−1 → X �0 (resp., X�0 → X �1 → . . . ) is
called a proper projective (resp., injective) resolution of M � (they are often called
Cartan-Eilenberg resolutions).

Proposition 13.12. The following hold.
1. Assume that Asatisfies the condition Ab4 with enough projectives. Given a

complex M � ∈ C(A), let π : P �� → M � be a proper projective resolution. Then

Totπ : TotP �� → M �

is a quasi-isomorphism in K(A), and TotP �� ∈ Ks(ProjA).
2. Assume that Asatisfies the condition Ab4* with enough injectives. Given a

complex M � ∈ C(A), let µ : M � → I�� be a proper injective resolution. Then
∧

Totµ : M � →
∧

TotI ��

is a quasi-isomorphism in K(A), and
∧

TotI �� ∈ Ks(InjA).

Proof. 1. We can consider π : P �� → M � as π : P �� → emIM � in C2(A). Then we
have a commutative diagram

σI
≤nP �� σI

≤nπ
−−−−→ σI

≤nemIM �

αn

� �βn

σI
≤n+1P

�� σI
≤nπ

−−−−→ σI
≤n+1em

IM �

where αn, βn are term-split monomorphisms. Therefore we have a commutative
diagram

TotσI
≤nP �� σI

≤nπ
−−−−→ σ≤nM �

Totαn

� �βn

TotσI
≤n+1P

�� σI
≤nπ

−−−−→ σ≤n+1M
�
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where Tot αn, βn are term-split monomorphisms, and all horizontal morphisms are

quasi-isomorphisms, because Tot(σI
≤nP �� σI

≤nπ
−−−→ σI

≤nemIM �) is acyclic by Lemma
13.7. According to Proposition 11.7, we have isomorphisms in D(A)

TotP �� = lim−→TotσI
≤nP ��

∼= hlim
−→

TotσI
≤nP ��

∼= hlim
−→

σ≤nM �

∼= lim−→σ≤nM �

= M �.

On the other hand, since TotσI
≤nP �� ∈ K−(ProjA), TotP �� ∼= hlim

−→
TotσI

≤nP �� ∈
Ks(ProjA).

2. Similarly

Definition 13.13. For a morphism u : X�� → Y �� of double complexes, we define
the complexes M��

I (u), M��
II(u) as follows.

M��
I (u)p,q = Xp+1,q ⊕ Y p,q

dp,q
I M��

I (u) =
[
−dp+1,q

I X 0

up+1,q d
p,q
I Y

]
dp,q
II M��

I (u) =
[
−dp+1,q

II X 0

0 dp,q
II Y

]
,

M��
II(u)p,q = Xp,q+1 ⊕ Y p,q

dp,q
I M��

II(u) =
[
−dp,q+1

I X 0

0 dp,q
I Y

]
dp,q
II M��

II(u) =
[
−dp,q+1

II X 0

up+1,q dp,q
II Y

]
.

Proposition 13.14. For a morphism u : X �� → Y �� of double complexes, the fol-
lowing hold.

1. Tot M��
I (u) = M�(Totu).

2. Tot M��
II(u) = M�(Tot u).

14. Derived Functors of Bi-∂-functors

Definition 14.1 (Bi-∂-functor). For triangulated categories C1, C2 and D, a bi-
∂-functor (F, θ1, θ2) : C1 × C2 → D is a bifunctor F : C1 × C2 → D together
with bifunctorial isomorphisms θ1 : F (TC1−, ?) ∼→ TDF (−, ?), θ2 : F (−, TC2?)

∼→
TDF (−, ?) such that

(a) For each object X1 ∈ C1, F (X1,−) = (F (X1,−), θ2(X1,−)) : C2 → D is a
∂-functor.

(b) For each object X2 ∈ C2, F (−, X2) = (F (−,X2), θ1(−,X2)) : C1 → D is a
∂-functor.

For bi-∂-functors (F, θ1, θ2), (G,η1, η2) : C1 × C2 → D, a bifunctorial morphism
φ : F → G is called a bi-∂-functorial morphism if (TDφ)θ1 = η1φ(TC1 × 1C2),
(TDφ)θ2 = η2φ(1C1 × TC2).

We denote by ∂2(C1 × C2,D) the collection of all bi-∂-functors from C1 × C2 to
D, and denote by ∂2 Mor(F, G) the collection of all bi-∂-functorial morphisms from
F to G.
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Proposition 14.2. Let C1,C2 and C3 be triangulated categories, Ui épaisse subcat-
egories of Ci, and Qi : Ui → Ci/Ui the canonical quotients (i = 1, 2). Assume a
bi-∂-functor F = (F, θ1, θ2) : C1 × C2 → C3 satisfies that

(a) F (U1, C2) = {O}.
(b) F (C1,U2) = {O}.

Then there exists a unique bi-∂-functor F = (F , θ1, θ2) : C1/U1 × C2/U2 → C3 such
that F = F (Q1 × Q2) and θi = θi(Q1 ×Q2) (i = 1, 2).

C1 × C2

Q1×Q2

��

F

�������������

C1/U1 × C2/U2
F

��


 C3

Sketch. We define the functor F : C1/U1 × C2/U2 → C3 as follows. For Xi ∈ Ci, let
F (Q1X1, Q2X2) = F (X1, X2). For [(fi, si)] : Xi → Yi in Ci/Ui, let F ([(f1, s1)],
Q2X2) = F (s1, X2)−1F (f1,X2), F (Q1X1, [(f2, s2)]) = F (X1, s2)−1F (X1, f2). Let
Ti, T i are translations of Ci, Ci/Ui, respectively (i = 1, 2, 3). Then we define

F (T 1Q1X1, Q2X2)

θ1(Q1X1,Q2X2) ����������������
F (Q1T1X1,Q2X2) F (T1X1,X2)

θ1(X1,X2)

��
T3F (Q1X1,Q2X2) T3F (X1,X2)

F (Q1X1, T 2Q2X2)

θ2(Q1X1,Q2X2) ����������������
F (Q1X1,Q2T2X2) F (X1, T2X2)

θ2(X1,X2)

��
T3F (Q1X1,Q2X2) T3F (X1,X2)

Then it is not hard to see that F satisfies the assertions (left to the reader).

Proposition 14.3. Let C1, C2 and C3 be triangulated categories, Ui épaisse sub-
categories of Ci, and Qi : Ui → Ci/Ui the canonical quotients (i = 1, 2). For
bi-∂-functors F = (F, θ1, θ2),G = (G, η1, η2) : C1/U1 × C2/U2 → C3, we have a
bijective correspondence

∂2 Mor(F,G) ∼→ ∂2 Mor(F (Q1 × Q2), G(Q1 × Q2)), (ζ �→ ζ(Q1 × Q2)).

Definition 14.4 (Right Derived Functor). Let Ai be abelian categories, and let
K∗i(Ai) be a quotientizing subcategory of K(Ai) and F : K∗1(A1) × K∗2(A2) →
K(A3) a bi-∂-functor (i = 1, 2, 3). The right derived functor of F is a bi-∂-functor

R∗1,∗2F : D∗1(A1)×D∗2(A2) → D(A3)

together with a functorial morphism of bi-∂-functors

ξ ∈ ∂2 Mor(QA3F, R∗1,∗2F (Q∗1
A1

×Q∗2
A2

))

with the following property:
For G ∈ ∂2(D∗1(A1) × D∗2(A2),D(A3)) and ζ ∈ ∂2 Mor(QA3F, G(Q∗1

A1
× Q∗2

A2
)),

there exists a unique morphism η ∈ ∂2 Mor(R∗1,∗2F, G) such that

ζ = (η(Q∗1
A1

×Q∗2
A2

))ξ.
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In other words,

∂2 Mor(QA3F,−(Q∗1
A1

× Q∗2
A2

)) ∼= ∂2 Mor(R∗1,∗2F,−)

as functors from ∂2(D∗1(A1) ×D∗2(A2),D(A3)) to Set (See Lemma 1.8).

Theorem 14.5 (Existence Theorem). Let Ai be abelian categories (i = 1, 2, 3),
and let K∗i(Ai) be a quotientizing subcategory of K(Ai) and F : K∗1(A1)×K∗2(A2)
→ K(A3) a bi-∂-functor. Assume there exist triangulated full subcategories Li of

K∗i(Ai) (i = 1, 2) such that

(a) for any X �
i ∈ K∗i(Ai) there is a quasi-isomorphism X �

i → I �
i with I�

i ∈ Li,
(b) QA3F (Lφ

1 ,L2) = {O},
(c) QA3F (L1,Lφ

2 ) = {O},
where Lφ

i = Kφ(Ai) ∩ Li (i = 1, 2). Then there exists the right derived functor
(R∗1,∗2F, ξ) such that ξ(I�

1,I�
2)

: QA3F (I �
1, I

�
2) → R∗F (I �

1, I
�
2) is a quasi-isomorphism

for (I �
1, I

�
2) ∈ L1 × L2.

Proof. Let Qi : K∗i(Ai) → D∗i(Ai) be the canonical quotients, and let Ei : Li →
K∗i(Ai) be the embedding functors, then by the assumption 1 and Proposition
7.16 the canonical functor Ei : Li/Lφ

i → D∗i(Ai) are equivalences (i = 1, 2). Let
Ji : D∗i(Ai) → Li/Lφ

i be quasi-inverses of Ei (i = 1, 2). By the assumption 2, 3
and Proposition 14.2 there is a bi-∂-functor

F : L1/Lφ
1 ×L2/Lφ

2 → D(A3)

such that Q3F (E1×E2) = F (Q′
1×Q′

2), where Q′
i : Li → Li/Lφ

i are the canonical
quotients. Put R∗1,∗2F = F (J1 × J2). Since (Q1E1 × Q2E2) = (E1Q′

1 × E2Q′
2),

we have

∂2 Mor(Q3F (E1 ×E2),G(Q1E1 ×Q2E2))
∼= ∂2 Mor(F (Q′

1 × Q′
2), G(E1Q

′
1 × E2Q

′
2))

∼= ∂2 Mor(F (J1E1 × J2E2),G(E1 ×E2))
∼= ∂2 Mor(F (J1 × J2), G)
= ∂2 Mor(R∗1,∗2F, G)

It remains to show that

∂2 Mor(Q3F,G(Q1 ×Q2))
∼→ ∂2 Mor(Q3F (E1 × E2), G(Q1E1 × Q2E2)),

(φ �→ φ(E1 ×E2)).

Let φ ∈ ∂2 Mor(Q3F, G(Q1 × Q2)) with φ(E1 × E2) = 0. For any X �
i ∈ K∗i(Ai)

there exists I �
i ∈ Li which has a quasi-isomorphism si : X �

i → I �
i (i = 1, 2). Then

φ(X�
1,X�

2)
= G(Q1s1,Q2s2)−1φ(I�

1,I�
2)Q3F (s1, s2)

= 0,

and hence φ = 0. Given ψ ∈ ∂2 Mor(Q3F (E1 × E2), G(Q1E1 × Q2E2)), for any
X �

i ∈ K∗i(Ai), let

φ(X1,X2) = (G(Q1s1,Q2s2))−1ψ(I�
1,I�

2)Q3F (s1, s2)

for some quasi-isomorphism si : X�
i → I �

i, with I�
i ∈ Li (i = 1, 2). For another

quasi-isomorphism s′i : X�
i → I′

�
i, by the assumptions 1, we have commutative
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diagrams

X �
i

si−−−−→ I�
i

s′i

� �t′i

I′
�
i

ti−−−−→ I ′′�
i

where all morphisms are quasi-isomorphisms and I ′′�
i ∈ Li (i = 1, 2). Then we have

(G(Q1s1, Q2s2))−1ψ(I�
1,I�

2)
Q3F (s1, s2)

= (G(Q1t
′
1s1,Q2t

′
2s2))−1ψ(I′′�

1,I′′�
2)

Q3F (t′1s1, t
′
2s2)

= (G(Q1t1s
′
1,Q2t2s

′
2))−1ψ(I′′�

1,I′′�
2)

Q3F (t1s′1, t2s′2)
= (G(Q1s

′
1, Q2s

′
2))−1ψ(I′�

1,I′�
2)

Q3F (s′1, s′2)

It is not hard to see that φ ∈ ∂2 Mor(Q3F, G(Q1 ×Q2)). The last assertion is easy
to check.

Proposition 14.6. Let Ai be abelian categories (i = 1, 2, 3), and let K∗i(Ai) be
a quotientizing subcategory of K(Ai) and F : K∗1(A1) × K∗2(A2) → K(A3) a bi-∂-
functor. Assume there exists a triangulated full subcategories Li of K∗i(Ai) (i =
1, 2) such that

(a) for any X �
i ∈ K∗i(Ai) there is a quasi-isomorphism X �

i → I �
i with I�

i ∈ Li,
(b) QA3F (Lφ

1 , K∗2(A2)) = {O},
(c) QA3F (L1,Lφ

2 ) = {O},
where Lφ

i = Kφ(Ai) ∩ Li (i = 1, 2). Then we have
1. There is a bi-∂-functor R∗1,∗2

I F : D∗1(A1)× K∗2(A2) → D(A3) such that

∂2 Mor(QA3F,−(Q∗1
A1

× 1K∗2 (A2))) ∼= ∂2 Mor(R∗1,∗2
I F,−),

and R∗1,∗2
I F (−,X2) is the right derived functor of F (−, X2) for any X2 ∈

K∗2(A2).
2. There is a bi-∂-functor R∗1,∗2

II R∗1,∗2
I F : D∗1(A1) × D∗2(A2) → D(A3) such

that

∂2 Mor(R∗1,∗2
I F,−(1D∗1 (A1) ×Q∗2

A2
)) ∼= ∂2 Mor(R∗1,∗2

II R∗1,∗2
I F,−),

and

∂ Mor(R∗1,∗2
I F (X1, ?),−Q∗2

A2
) ∼= ∂ Mor(R∗1,∗2

II R∗1,∗2
I F (X1, ?),−)

for any X1 ∈ K∗1(A1).
3. We have an isomorphism

∂2 Mor(QA3F,−(Q∗1
A1

×Q∗2
A2

)) ∼= ∂2 Mor(R∗1,∗2
II R∗1,∗2

I F,−).

In particular, R∗1,∗2
II R∗1,∗2

I F ∼= R∗1,∗2F .

Proof. According to the construction of the right derived functor of a bi-∂-functor
in the proof of Theorems 14.5, 12.5, it is easy (left to the reader).

Corollary 14.7. Let Ai be abelian categories (i = 1, 2, 3), and let K∗i(Ai) be a
quotientizing subcategory of K(Ai) and F : K∗1(A1) × K∗2(A2) → K(A3) a bi-∂-
functor. Assume there exists a triangulated full subcategories Li of K∗i(Ai) (i =
1, 2) such that

(a) for any X �
i ∈ K∗i(Ai) there is a quasi-isomorphism X �

i → I �
i with I�

i ∈ Li,
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(b) QA3F (Lφ
1 , K∗2(A2)) = {O},

(c) QA3F (K∗1(A1),Lφ
2 ) = {O},

where Lφ
i = Kφ(Ai) ∩ Li (i = 1, 2). Then we have

1. There is a bi-∂-functor R∗1,∗2
I F : D∗1(A1)× K∗2(A2) → D(A3) such that

∂2 Mor(QA3F,−(Q∗1
A1

× 1K∗2 (A2))) ∼= ∂2 Mor(R∗1,∗2
I F,−),

and R∗1,∗2
I F (−,X2) is the right derived functor of F (−, X2) for any X2 ∈

K∗2(A2).
2. There is a bi-∂-functor R∗1,∗2

II F : K∗1(A1)× D∗2(A2) → D(A3) such that

∂2 Mor(QA3F,−(1K∗1(A1) × Q∗2
A2

)) ∼= ∂2 Mor(R∗1,∗2
II F,−),

and R∗1,∗2
II F (X1,−) is the right derived functor of F (X1,−) for any X1 ∈

K∗1(A1).
3. We have an isomorphism

R∗1,∗2F ∼= R∗1,∗2
II R∗1,∗2

I F ∼= R∗1,∗2
I R∗1,∗2

II F.

Definition 14.8 (Hom�
A). For a complexes X �, Y � ∈ C(A), we define the double

complex Hom��
A(X �, Y �) by

Homp,q
A (X�, Y �) = HomA(X−p, Y q)

dp,q
I Hom��

A(X� ,Y �) = Homp,q
A (d−p−1

X� , Y q)

dp,q
II Hom��

A(X� ,Y �) = (−1)p+q+1 Homp,q
A (X−p, dq

Y �),

and define the complex Hom�
A(X �, Y �) by

∧
Tot Hom��

A(X �, Y �).

Then it is easy to see that

Hom�
A : C(A)op × C(A) → C(Ab)

is a bifunctor.

Lemma 14.9. For complexes X �, Y � ∈ C(A), we have an isomorphism

Hn Hom�
A(X �, Y �) ∼= HomK(A)(X�, TnY �).

Proof. By the definition, for (up,q)p+q=r ∈ Homr
A(X�, Y �) we have

dr
Hom�

A(X,Y )((u
p,q)p+q=r)

= (up−1,qd−p
X + (−1)p+q+1dq

Y up,q−1)p+q=r ∈ Homr+1
A (X �, Y �).

Put u = f, i = −p, r = n, then f−i,i+n : Xi → Y i+n for all i and we have

dn
Hom�

A(X,Y )((f
−i,i+n)i∈Z)

= (f−i−1,i+1+ndi
X − (−1)ndi+n

Y f−i,i+n)i∈Z.

Then it is easy to see that Ker dn
Hom�

A(X,Y ) = HomC(A)(X �, TnY �). Put u = h, i =
−p, r = n − 1, then h−i,i+n−1 : Xi → Y i+n−1 for all i and we have

dn−1
Hom�

A(X,Y )((h
−i,i+n−1)i∈Z)

= (h−i−1,i+ndi
X + (−1)ndi+n

Y h−i,i+n−1)i∈Z.

Then this means Imdn−1
Hom�

A(X,Y ) = HtpC(A)(X�, TnY �).

Lemma 14.10. For a complexes X �, Y � ∈ C(A), the following hold.
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1. dHom�
A(X�,TY �) = −TdHom�

A(X�,Y �)
2. dHom�

A(T−1X�,Y �) = TdHom�
A(X� ,Y �)

3. Define θp,q
1 : Homp,q

A (T−1X �, Y �) → Homp−1,q
A (X�, Y �) by the identities, then

we have an isomorphism

θ1 : Hom�
A ◦(T−1 × 1C(A))

∼→ T ◦ Hom�
A .

4. Define θp,q
2 : Homp,q

A (X �, TY �) → Homp,q+1
A (X �, Y �) by (−1)p+q, then we have

an isomorphism

θ2 : Hom�
A ◦(1C(A) × T ) ∼→ T ◦ Hom�

A .

Lemma 14.11. For a morphism u : X � → Y � in C(A) and N � ∈ C(A), the follow-
ing hold.

1. Hom�
A(N �, M�(u)) ∼= M�(Hom�

A(N �, u)).
2. Hom�

A(M�(u),N �) ∼= T−1 M�(Hom�
A(u, N �)).

Proof. 1. The double complex Hom��
A(N �,M�(u)) has the following form

Homp,q
A (N �,M�(u)) = HomA(M−p, Xq+1 ⊕ Y q)

dp,q
IHom��

A(N�,M�(u)) =
[

Hom(d
−(p+1)
M ,X) 0

0 Hom(d
−(p+1)
M ,Y )

]
dp,q
IIHom��

A(N�,M�(u))
=

[
(−1)p+q+2 Hom(M,dq+1

X ) 0

(−1)p+q+1 Hom(M,uq) (−1)p+q+1 Hom(M,dq
Y )

]
On the other hand, the double complex M��

II(Hom��
A(N �, u)) has the following form

Mp,q
II (Hom��

A(N �, u)) = HomA(M−p,Xq+1 ⊕ Y q)

dp,q
I M��

II(Hom��
A(N�,u)) =

[
−Hom(d

−(p+1)
M ,X) 0

0 Hom(d
−(p+1)
M ,Y )

]
dp,q
II M��

II(Hom��
A(N�,u)) =

[
(−1)p+q+1 Hom(M,dq+1

X ) 0

Hom(M,uq) (−1)p+q+1 Hom(M,dq
Y )

]
Then it is easy to see that morphisms

[
(−1)p+q 0

0 1

]
: Mp,q

II (Hom��
A(N �, u)) →

Homp,q
A (N �,M�(u)) induce an isomorphism between them in C2(A). By Proposition

13.14, we get the statement.
2. The double complex Hom��

A(M�(u),N �) has the following form

Homp,q
A (M�(u),N �) = HomA(X−p+1 ⊕ Y −p, Mq)

dp,q
I Hom��

A(M�(u),N �) =
[
−Hom(d

−p
X ,M) 0

Hom(up,M) Hom(d−p−1
Y ,M)

]
dp,q
II Hom��

A(M�(u),N �) =
[

(−1)p+q+1 Hom(X,dq
M ) 0

0 (−1)p+q+1 Hom(X,dq
M )

]
On the other hand, the double complex T−1

I M��
I (Hom��

A(u, N �)) has the following
form

(T−1
I M��

I (Hom��
A(u,N �)))p,q = HomA(X−p+1 ⊕ Y −p, Mq)

dp,q

IT−1
I M��

I (Hom��
A(u,N�))

=
[

Hom(d−p
X ,M) 0

−Hom(up,M) −Hom(d−p−1
Y ,M)

]
dp,q

IIT−1
I M��

I (Hom��
A(u,N�))

=
[

(−1)p+q+1 Hom(X,dq
M ) 0

0 (−1)p+q+1 Hom(X,dq
M )

]
Then it is easy to see that morphisms

[
1 0
0 −1

]
: (T−1

I M��
I (Hom��

A(u,N �)))p,q →
Homp,q

A (M�(u), N �) induce an isomorphism between them in C2(A). By Lemma
13.6 and Proposition 13.14, we get the statement.
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Proposition 14.12. The bi-functor Hom�
A : C(A)op × C(A) → C(Ab) induces the

bi-∂-functor

Hom�
A : K(A)op ×K(A) → K(Ab).

Proof. By Lemmas 14.10, 14.11 and Corollary 6.16, it is easy.

Proposition 14.13. Let F : A → A′, G : A′ → A be additive functors between
abelian categories such that G � F . Then we have a functorial isomorphism

Hom�
A(GX �, Y �) ∼= Hom�

A′(X�, FY �).

Theorem 14.14. The bi-∂-functor Hom�
A : K∗1(A)op × K∗2(A) → K(Ab) has the

right derived functor R∗1,∗2 Hom�
A : Hom�

A : D∗1(A)op × D∗2(A) → D(Ab) if it
satisfies the following.

1. If A has enough projectives, then
R−,∞ Hom�

A exits and R−,∞ Hom�
A
∼= R−,∞

II R−,∞
I Hom�

A
2. If A has enough injectives, then

R∞,+ Hom�
A exits and R∞,+ Hom�

A
∼= R∞,+

I R∞,+
II Hom�

A
3. If A satisfies the condition Ab4 with enough projectives, then

RHom�
A exits and RHom�

A
∼= RIIRI Hom�

A
4. If A satisfies the condition Ab4* with enough injectives, then

RHom�
A exits and RHom�

A
∼= RIRII Hom�

A
5. If A satisfies the conditions Ab4 and Ab4* with enough projectives and with

enough injectives, then
RHom�

A
∼= RIIRI Hom�

A
∼= RIRII Hom�

A
Here ∞ means “nothing”.

Proof. By Lemma 14.9, Corollary 10.9, Propositions 14.6, 14.7 can be applied.

Remark 14.15. In the above 5, for complexes X �, Y � ∈ K(A), we take P � ∈
Ks(ProjA) I � ∈ Ks(InjA) which have quasi-isomorphisms P � → X�, Y � → I�. Then
we have an isomophisms

RHom�
A(X �, Y �) ∼= Hom�

A(P �, Y �)∼= Hom�
A(X �, I �) ∼= Hom�

A(P �, I �).

Corollary 14.16. Assume that A satisfies one of the conditions of Theorem 14.14.
For X� ∈ D∗1(A), Y � ∈ D∗2(A) and n ∈ Z, we have an isomorphism

Hn R∗1,∗2 Hom�
A(X�, Y �) ∼= HomD(A)(X �, Y �[n]).

Proof. By Proposition 11.10 and Lemma 10.10, for X � ∈ D∗1(A), Y � ∈ D∗2(A), we
have either a quasi-isomorphism P � → X � or a quasi-isomorphism Y � → I� with
P � ∈ K∗1(ProjA), I � ∈ K∗2(ProjA). According to Corollary 10.9 and Proposition
11.12, we have one of isomorphisms

Hn R∗1,∗2 Hom�
A(X �, Y �) ∼= Hn Hom�

A(P �, Y �)
∼= HomK(A)(P �, Y �[n])
∼= HomD(A)(X�, Y �[n]),

Hn R∗1,∗2 Hom�
A(X �, Y �) ∼= Hn Hom�

A(X �, Y �)
∼= HomK(A)(X�, I�[n])
∼= HomD(A)(X�, Y �[n]).
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Definition 14.17. For a complex X � of right A-modules and a complex Y � of left

A-modules we define the double complex X � ��
⊗A Y � by

X � p,q
⊗A Y � = Xp⊗AY q

dp,q

I X� ��
⊗AY �

= dp
X⊗AY q

dp,q

II X� ��
⊗AY �

= (−1)p+qXp⊗Adq
Y

and define the complex X � �
⊗A Y � by

TotX � ��
⊗A Y �.

Then it is easy to see that
�
⊗A : C(ModA) × C(ModAop ) → C(Ab)

is a bifunctor.

Lemma 14.18. For a complexes X � ∈ C(Mod A), Y � ∈ C(ModAop), the following
hold.

1. d
(TX� )

�
⊗AY � = −Td

X� �
⊗AY �

2. d
X� �

⊗ATY � = Td
X� �

⊗AY �

3. Define θp,q
1 : (TX �)

p,q
⊗A Y � → X � p+1,q

⊗ A Y � by the identities, then we have an
isomorphism

θ1 :
�
⊗A ◦ (T × 1C(Mod A))

∼→ T ◦
�
⊗A.

4. Define θp,q
2 : X � p,q

⊗A TY � → X� p,q+1
⊗ A Y � by the (−1)p+q, then we have an

isomorphism

θ2 :
�
⊗A ◦ (1C(Mod Aop ) × T ) ∼→ T ◦

�
⊗A.

Lemma 14.19. The following hold.
1. For a morphism u : X � → Y � in C(Mod Aop ) and N � ∈ C(Mod A) we have

N � �
⊗A M�(u) ∼= M�(N � �

⊗A u).
2. For a morphism u : X � → Y � in C(Mod A) and N � ∈ C(Mod Aop ) we have

M�(u)
�
⊗A N � ∼= M�(u

�
⊗A N �).

Proposition 14.20. The bi-functor
�
⊗A : C(ModA) × C(Mod Aop ) → C(Ab) in-

duces the bi-∂-functor
�
⊗A : K(ModA) ×K(Mod Aop ) → K(Ab).

Lemma 14.21. Let DZ = HomZ(−,Q/Z) : ModA → ModAop (resp., DZ =
HomZ(−,Q/Z) : ModAop → ModA). Then the following hold.

1. For an sequence X → Y → Z of A-modules, X → Y → Z is exact if and only
if DZZ → DZY → DZX is exact.

2. For an A-module M , M is a flat A-module if and only if DZM is an injective
A-module.
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Theorem 14.22. The bi-∂-functor
�
⊗A : K(Mod A) × K(ModAop ) → K(Ab) has

the left derived functor
�
⊗L

A : D(Mod A)× D(ModAop) → D(Ab).

Proof. For X � ∈ K(ModA), Y � ∈ K(ModAop), we have isomorphisms (see Proposi-
tion 15.4)

DZ(X � �
⊗A Y �) = DZ(TotX� ��

⊗A Y �)

∼=
∧

TotDZ(X � ��
⊗A Y �)

∼=
∧

TotHom��
Aop (X �,DZY �)

∼= Hom�
Aop (X �,DZY �).

By Lemma 14.9, we can apply Proposition 11.12 to the above isomorphism. Then

by Lemma 14.21, for P � ∈ Ks(ProjA) and Y � ∈ K(ModAop), P � �
⊗A Y � are acyclic

either if P � is acyclic or if Y � is acyclic. According to the left derived version of
Theorem 12.5, we complete the proof.

Remark 14.23. In the above, for complexes X� ∈ K(Mod A), Y � ∈ K(ModAop),
we take P � ∈ Ks(ProjA) Q� ∈ Ks(ProjAop) which have quasi-isomorphisms P � →
X �, Q� → Y �. Then we have an isomophisms

X � �
⊗L

AY � ∼= P � �
⊗AY �∼= X� �

⊗AQ� ∼= P � �
⊗AQ� .

For X ∈ Mod A and Y ∈ ModAop, we denote Tori
A(X, Y ) = Hi(X

�
⊗L

AY ).

15. Bimodule Complexes

Throughout this section, k is a commutative ring, A,B,C are k-algebras, AUB

an A-B-bimodule, BVC an B-C-bimodule, AWC an A-C-bimodule and CSA a C-
A-bimodule.

Proposition 15.1. The following hold.
1. HomAop⊗kB(AUB , HomC(BVC , AWC)) ∼= HomAop⊗kC(AU⊗BVC , AWC).
2. HomAop⊗kB(AUB, HomC (BVC , AWC)) ∼= HomB⊗kCop (BVC , HomA(AUB , AWC )).
3. (AU⊗BVC)⊗Aop⊗kC(CSA) ∼= (AUB)⊗Aop⊗kB(BV ⊗CSA).
4. If AUB is Aop⊗kB-projective, VC is C-projective, then AU⊗BVC is Aop⊗kC-

projective.
5. If BV is B-flat, AWC is Aop⊗kC-injective, then HomC(BVC , AWC) is

Aop⊗kB-injective.
6. If BVC is Bop⊗kC-projective, AW is A-injective, then HomC(BVC , AWC) is

Aop⊗kB-injective.
7. If AUB is Aop⊗kB-flat, VC is C-flat , then AU⊗BVC is Aop⊗kC-flat.

Corollary 15.2. The following hold.
1. AU is A-projective, VC is C-projective, then AU⊗kVC is Aop⊗kC-projective.
2. BV is B-flat, AW is A-injective, then Homk(BVk, AWk) is Aop⊗kB-injective.
3. AU is A-flat, VC is C-flat, then AU⊗kVC is Aop⊗kC-flat.

Proposition 15.3. Let AM be an A-module, BN a B-module, then the following
hold.

1. HomAop⊗kB(AUB , Homk(BBk, AVk)) ∼= HomA(AU, AV ).
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2. HomA(AM, AW ) ∼= HomAop⊗kC(AM⊗kCC , AWC).
3. U⊗BN ∼= (AUB)⊗Aop⊗kB(BN⊗kAA).
4. If B is k-projective, AUB is Aop⊗kB-projective, then AU is A-projective.
5. C is k-flat, AWC is Aop⊗kC-injective, then AW is A-injective.
6. B is k-flat, AUB is Aop⊗kB-flat, then AU is A-flat.

Proposition 15.4. For U � ∈ K(Mod Aop⊗kB), V � ∈ K(Mod B⊗kCop ), W � ∈
K(ModAop⊗kC), S� ∈ K(ModC⊗kAop ), the following hold.

1. We have an isomorphism

Hom�
Aop⊗kB(AU �

B , Hom�
C(BV �

C , AW �
C)) ∼= Hom�

Aop⊗kC(AU � �
⊗B V �

C , AW �
C).

2. We have an isomorphism

Hom�
Aop⊗kB(AU �

B, Hom�
C(BV �

C , AW �
C)) ∼= Hom�

B⊗kCop (BV �
C , Hom�

A(AU �
B, AW �

C)).

3. We have an isomorphism

(AU � �
⊗B V �

C)
�
⊗Aop⊗kC (CS�

A) ∼= (AU �
B)

�
⊗Aop⊗kB (BV � �

⊗C S�
A).

Proof. 1. Let α be the trifunctorial isomorphism in 1 of Proposition 15.1. For every
(p, q, r) ∈ Z3, define

φp,q,r = (−1)
r(2q+r+1)

2 α : HomAop⊗kB(AU−p
B ,HomC(BV −q

C , AW r
C)) →

HomAop⊗kC(AU−p⊗BV −q
C , AW r

C),

then (φp,q,r) induces the isomorphism between triple complexes. By taking
∧

Tot, we
have the assertion.

2. Let β be the trifunctorial isomorphism in 2 of Proposition 15.1. For every
(p, q, r) ∈ Z3, define

φ′
p,q,r = (−1)

(p+q)(p+q+2r+1)
2 β : HomAop⊗kB(AU−p

B ,HomC(BV −q
C , AW r

C)) →
HomBop⊗kC(BV −q

C , HomA(AU−p
B , AW r

C)),

then (φp,q,r) induces the isomorphism between triple complexes. By taking
∧

Tot, we
have the assertion.

3. Let γ be the trifunctorial isomorphism in 3 of Proposition 15.1. For every
(p, q, r) ∈ Z3, define

ψp,q,r = (−1)
r(2q+r−1)

2 γ : (AUp⊗BV q
C)⊗Aop⊗kC(CSr

A) →
(AUp

B)⊗Aop⊗kB(BV q⊗CSr
A),

then (φp,q,r) induces the isomorphism between triple complexes. By taking Tot, we
have the assertion.

Proposition 15.5. The following hold.

1. For a functor −
�
⊗A U �

B : K(Mod A) → K(ModB) and its right adjoint
Hom�

B(AU �
B,−) : K(ModB) → K(Mod A), there exist the left derived functor

−
�
⊗ L

AU �
B : D(ModA) → D(ModB) and the right derived functor

RHom�
B(AU �

B ,−) : D(Mod B) → D(Mod A) such that

RHom�
B(−

�
⊗ L

AU �
B, ?) ∼= RHom�

A(−, RHom�
B(AU �

B, ?)).
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In particular, we have −
�
⊗ L

AU �
B � R Hom�

B(AU �
B , ?).

2. For a right adjoint pair of functors HomA(−, AUB) : K(ModAop) → K(ModB),
Hom�

B(−, AU �
B) : K(ModB) → K(ModAop), there exist the right derived

functors RHom�
A(−, AU �

B) : D(ModAop) → D(Mod B), R Hom�
B(−, AU �

B) :
D(ModB) → D(ModAop) such that

RHom�
B(−,R Hom�

A(?, AU �
B)),∼= RHom�

A(?, RHom�
B(−, AU �

B)).

In particular, (RHom�
A(?, AU �

B), RHom�
B(−, AU �

B)) is a right adjoint pair.

Proof. 1. Let X � ∈ K(Mod Aop ), Y � ∈ K(ModB). According to Theorems 14.14,
14.22 and Remark 14.15, we may assume X� ∈ Ks(ProjA), Y � ∈ Ks(InjB). It is clear
for the existence of the derived functor. By Proposition 15.4 we have isomorphisms

R Hom�
B(X � �

⊗ L
AU �

B, Y �) ∼= Hom�
B(X� �

⊗A U �
B , Y �)

∼= Hom�
A(X �,Hom�

B(AU �
B, Y �))

∼= R Hom�
A(X �, RHom�

B(AU �
B , Y �)).

We get the last assertion by taking cohomologies of the above isomorphisms.
2. Let X � ∈ K(ModAop), Y � ∈ K(Mod B). According to Theorem 14.14 and

Remark 14.15, we may assume X � ∈ Ks(ProjAop), Y � ∈ Ks(ProjB). It is clear for
the existence of the derived functor. By Proposition 15.4 we have isomorphisms

RHom�
B(Y �,R Hom�

A(X �, AU �
B)) ∼= Hom�

B(Y �, Hom�
A(X �, AU �

B))
∼= Hom�

A(X�, RHom�
B(Y �, AU �

B))
∼= RHom�

A(X �, RHom�
B(Y �, AU �

B)).

We get the last assertion by taking cohomologies of the above isomorphisms.

Remark 15.6. The above derived functors −
�
⊗L

AU �
B : D(ModA) → D(ModB) and

R Hom�
B(AU �

B ,−) : D(Mod B) → D(Mod A) are the derived functors of ∂-functors

−
�
⊗A U �

B and Hom�
B(AU �

B ,−), respectively. But they are not the derived functors
of bi-∂-functors in general!

We denote by ResA : ModAop⊗kB → Mod A the forgetful functor, and use the
same symbol ResA : K(ModAop⊗kB) → K(ModA) for the induced ∂-functor.

Proposition 15.7. If B is k-projective or C is k-flat, then

RHom�
A : D(ModBop⊗kA)op ×D(ModCop ⊗k A) → D(Mod Cop ⊗k B)

exists, and we have a commutative diagram

D(ModBop⊗kA)op ×D(ModCop ⊗k A)
Resop

A ×ResA−−−−−−−−→ D(ModA)op × D(Mod A)

R Hom�
A

� �R Hom�
A

D(ModCop ⊗k B) Resk−−−−→ D(Mod k)

Proof. Assume B is k-projective. According to Proposition 15.4, for BX�
A ∈

K(ModB ⊗k A), Y �
A ∈ K(Mod A), we have

Hom�
Bop⊗kA(BX �

A,Hom�
k(kBB , kY �

A)) ∼= Hom�
A(X �

A, Y �
A).

If BX�
A ∈ Ks(ProjBop ⊗k A), then by the above isomorphism, we have ResAX � ∈

Ks(ProjA). Therefore we get the assertion by Theorem 14.5.
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Assume C is k-flat. For CY �
A ∈ K(Mod Cop ⊗k A), X �

A ∈ K(ModA), we have

Hom�
Cop⊗kA(CC ⊗k X �

A, CY �
A) ∼= Hom�

A(X �
A, Y �

A).

If CY �
A ∈ Ks(InjCop ⊗k A), then by the above isomorphism, we have ResAY � ∈

Ks(InjA). By the same reason as the above.

Proposition 15.8. If either A or C is k-flat, then
�
⊗L

A : D(ModAop⊗kB) ×D(ModBop ⊗k C) → D(Mod Aop ⊗k C)

exists, and we have a commutative diagram

D(ModAop⊗kB) ×D(ModBop ⊗k C) ResB×ResBop−−−−−−−−−→ D(ModB)×D(ModBop )

�
⊗L

B

� � �
⊗L

B

D(ModAop ⊗k C) Resk−−−−→ D(Modk)

Proof. Assume A is k-flat. For X � ∈ K(ModAop⊗kB), Y � ∈ K(ModBop ), by
Proposition 15.4, we have an isomorphism

(AX�
B)

�
⊗Aop⊗B (BY �⊗kAA) ∼= X � �

⊗B Y �.

If AX �
B ∈ Ks(ProjAop ⊗k B), then by the proof of Theorem 14.22, X � �

⊗B Y � is
acyclic if either X � or Y � is acyclic. Therefore we get the assertion by Theorem
14.5. In case of C being k-flat, similarly.

Example 15.9. Let F be a field, k = A = F [[x]], B = C = F [[x]]/(x2). Let
AMB = F [[x]]/(x2), ANC = F , R′ Hom�

A the right derived functor of

Hom�
A : K−(ModBop⊗kA)op ×K+(ModCop⊗kA) → K(ModCop⊗kB).

Then we have

R′ Hom�
A(M, N) ∼= HomA(F [[x]]/(x2), F ).

Let RHom�
A be the right derived functor of Hom�

A : K−(ModA)op ×K+(ModA) →
K(Modk). Then we have

R Hom�
A(M,N) ∼= X0 → X1

where X0 → X1 = HomA(F [[x]], F )
HomA(x2,F )−−−−−−−−→ HomA(F [[x]], F ). Then

R′ Hom�
A(M, N) � RHom�

A(M,N)

in D(Modk).
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16. Tilting Complexes

Throughout this section, A, B,C are rings. We recall that modA is the category
of finitely presented right A-modules, and that projA is the full subcategory of
mod A consisting of finitely generated projective right A-modules.

Definition 16.1 (Perfect Complex). A complex X � ∈ D(ModA) is called a perfect
complex if X � is isomorphic to a complex of Kb(projA) in D(Mod A). We denote by
D(ModA)perf the triangulated full subcategory of D(ModA) consisting of perfect
complexes.

Lemma 16.2. For X � ∈ Kb(ProjA), the following are equivalent.

1. X � is a compact object in Kb(ProjA).
2. X � is isomorphic to an object of Kb(projA).

Proof. 2 ⇒ 1. By Lemma 16.3.

1 ⇒ 2. Let X � = X0 d0

−→ X1 → . . . → Xn, with Xi ∈ ProjA. By adding
P

1−→ P to X�, we may assume that X0 is a free A-module A(I). If I is a finite
set, then by 2 ⇒ 1 X0 is also compact, and hence τ≥1X � is compact. by induction
on n, we get the assertion. Otherwise, Since we have HomK(Mod A)(X�, A(I)) ∼=
HomK(Mod A)(X �,A)(I) , the canonical morphism X � → A(I) factors through a direct
summand µ : Am ↪→ A(I) for some m ∈ N. Then there is a homotopy morphism
h : X1 → A(I) such that 1A(I) − µg = hd0 with some g : A(I) → Am. Let A(I) =

Am⊕A(J) be the canonical decomposition, then A(J)
d0|

A(J)−−−−→ X1 ph−→ A(J) = 1A(J) ,
where p : A(I) → A(J) is the canonical projection. Therefore X� ∼= M�(1A(J))[−1]⊕
X ′�, where X ′� : Am → X ′1 → . . . → Xn with X ′1 being a direct summand of X1.
Then we reduce the case of X0 being a finitely generated free A-module.

Lemma 16.3. For a complex X � ∈ K(ProjA), the following hold.

1. X � is a compact object in K(Mod A).
2. There is a complex P � ∈ Kb(projA) such that X � ∼= P � in K(ModA).

Proof. 2 ⇒ 1. We may assume X � ∈ Kb(projA). Let {Y �
i }i∈I be a collection of

complexes of K(ModA). Since a finitely generated A-module is a compact object
in ModA (see Exercise 2.8), we have isomorphisms

Hom�
A(X �,

∐
i∈I

Y �
i ) ∼= Tot Hom��

A(X �,
∐

i∈I
Y �

i )

∼=
∐

i∈I
Tot Hom��

A(X �, Y �
i )

∼=
∐

i∈I
Hom�

A(X�, Y �
i ).

By taking cohomology, we have an isomorphism

HomK(Mod A)(X �,
∐

i∈I
Y �

i ) ∼=
∐

i∈I
HomK(Mod A)(X �, Y �

i ).

1 ⇒ 2. Since C�(X �) =
⊕

i∈Z
Ci(X �)[−i], we have isomorphisms in Ab∐

i∈Z
HomK(Proj A)(X �,Ci(X �)[−i]) ∼= HomK(ProjA)(X�,

⊕
i∈Z

Ci(X�)[−i])

∼=
∏

i∈Z
HomK(Proj A)(X �,Ci(X �)[−i]).
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Then it is easy to see HomK(Proj A)(X �,Ci(X �)[−i]) = 0 for all but finitely many
i ∈ Z. Therefore for all but finitely many i ∈ Z, we have exact sequences

HomA(X i+1, Ci(X�)) → HomA(Ci(X �),Ci(X �)) → O.

This means that the canonical morphisms Ci(X�) → Xi+1 are split monomor-
phisms. Then there are m ≤ n such that X � ∼= σ′

≥mσ≤nX�. σ′
≥mσ≤nX � ∈

K(ProjA). Then we may assume X � : X0 → X1 → . . . → Xn with H0(X �) �= 0,
Hn(X �) �= 0. By the proof of Lemma 16.2, we get the statement.

Proposition 16.4. Let X� be a complex of D∗(ModA), where ∗ = nothing, −.
Then the following are equivalent.

1. X � is a perfect complex.
2. X � is a compact object in D∗(ModA).

Proof. Since Ks(ProjA)
t∼= D(Mod A), it is trivial by Lemma 16.3.

Lemma 16.5. Let T � ∈ Kb(projA) with HomK(Mod A)(T �, T �[i]) = 0 for i �= 0, and
B = EndK(Mod A)(T ). Then there exists a fully faithful ∂-functor F : K−(ProjB) →
K−(ProjA) such that

1. FB ∼= T �.
2. F preserves coproducts.
3. F has a right adjoint G : K−(ProjA) → K−(ProjB).

Skip. This lemma is important. But the proof is out of the methods of derived
categories.

Lemma 16.6. If T � satisfies the condition (G), then F : K−(ProjB) →
K−(ProjA) is an equivalence.
(G) For X � ∈ K−(ProjA), X � = O whenever HomK−(Proj A)(T �,X �[i]) = 0 for all

i.

Proof. Let X� ∈ K−(ProjA) such that GX � = O. Then HomK−(Proj A)(T �, X�[i])
∼= HomK−(Proj B)(B,GX �[i]) = 0 for all i. Therefore KerG = {O}. By the left

version of Proposition 9.13, G and F are equivalences.

Definition 16.7. Let C be a triangulated category. A subcategory B of C is said
to generates C as a triangulated category if C is the smallest triangulated full sub-
category which is closed under isomorphisms and contains B.

Remark 16.8. Let C be a triangulated category. For a subcategory B of C, we
can construct the smallest triangulated full subcategory EB which is closed under
isomorphisms and contains B as follows.

Let E0B = B. For n > 0, let EnB be the full subcategory of C consisting of
objects X there exist U,V ∈ En−1B satisfying that either of (X,U, V, ∗, ∗, ∗) or
(U,V,X, ∗, ∗, ∗) is a triangle in C. Then it is easy to see that EB =

⋃
n≥0EnB is

the smallest triangulated full subcategory which is closed under isomorphisms and
contains B
Theorem 16.9. Let T � be a complex of Kb(projA) such that

(a) HomK(Mod A)(T �, T �[i]) = 0 for i �= 0,
(b) addT �

A generates Kb(projA).
Then F : K−(ProjB) → K−(ProjA) is an equivalence.
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Proof. It suffices to show that T � satisfies the condition of Lemma 16.6. Since
addT �

A generates Kb(projA), if HomK−(Proj A)(T �, X�[i]) = 0 for all i, then
HomK−(Proj A)(A,X �[i]) = 0 for all i. Thus X� = O.

Lemma 16.10. For X� ∈ D−(ModA), the following are equivalent.
1. X � ∈ Db(Mod A).
2. For any Y � ∈ D−(ModA), there is n such that HomD(Mod A(Y �, X�[i]) = 0 for

all i < n.

Proof. 1 ⇒ 2. We may assume X � ∈ Cb(ModA), Y � ∈ K−(ProjA). Then
HomD(Mod A)(Y �, X�[i]) ∼= HomK(Mod A)(Y �, X�[i]).

2 ⇒ 1. Since HomD(Mod Ab)(A,X �[i]) ∼= Hi(X�), it is easy.

For an additive category B and m ≤ n, we write K[m,n](B) for the full subcategory
of K(B) consisting of complexes X� with Xi = O for i < m, n < i.

Lemma 16.11. For X� ∈ Db(ModA), the following are equivalent.
1. X � is isomorphic to an object of Kb(ProjA).
2. For any Y � ∈ Db(ModA), there is n such that HomD(Mod A(X �, Y �[i]) = 0 for

all i > n.

Proof. 1 ⇒ 2. It is trivial.
2 ⇒ 1. We may assume X � ∈ K−(ProjA). Let M =

∏
i∈Z

Ci(X �). By the same
reason as the proof of Lemma 16.3, HomK−(Mod A)(X�, M[i]) = 0 for all i > n if and
only if X � is isomorphic to an object in K[−n,∞)(ProjA).

Theorem 16.12. Let A, B be rings. The following are equivalent.

1. D−(ModA)
t∼= D−(ModB).

2. Db(ModA)
t∼= Db(ModB).

3. Kb(ProjA)
t∼= Kb(ProjB).

4. Kb(projA)
t∼= Kb(projB).

5. There exists T � ∈ Kb(projA) with B ∼= HomKb(proj A)(T �) such that
(a) HomK(Mod A)(T �, T �[i]) = 0 for i �= 0,
(b) add T �

A generates Kb(projA).
6. There exists T � ∈ Kb(projA) with B ∼= HomKb(proj A)(T �) such that

(a) HomK(Mod A)(T �, T �[i]) = 0 for i �= 0,
(b) For X� ∈ K−(ProjA), X � = O whenever HomK−(Proj A)(T �,X �[i]) = 0 for
all i.

Proof. By Theorem 16.9, Lemmas 16.6, 16.10, 16.11 and 16.2.

Remark 16.13. Since the functors HomA(−,A) : Kb(projA) → Kb(projAop ) and
HomA(−, A) : Kb(projAop) → Kb(projA) induce a duality between them, the con-
dition 5 of Theorem 16.12 induces the left version of the condition 5. Therefore,

D−(ModA)
t∼= D−(ModB) if and only if D−(Mod Aop )

t∼= D−(ModBop ).

Definition 16.14. A complex T �
A ∈ Kb(projA) is called a tilting complex for A

provided that
1. HomK(Mod A)(T �, T �[i]) = 0 for i �= 0.
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2. addT �
A generates Kb(projA).

We say that B is derived equivalent to A if there is a ti lting complex T �
A such

that B ∼= EndK(Mod A)(T �).

Lemma 16.15. Let U be a collection of objects K[r,s](projA) for some r ≤ s. Con-
sider a sequence of triangles

U �
1 → U �

0 → X�
1 →

U �
2[1] → X �

1 → X�
2 →

. . .

U �
n[n − 1] → X�

n−1 → X�
n →
. . . ,

with all U �
i ∈ U . Then hlim

−→
X �

n ∈ K̃
−

(projA).

Proposition 16.16. For rings A, B, the following are equivalent.
1. B is derived equivalent to A.

2. K−(projA)
t∼= K−(projB).

In this case, we have K−,b(projA)
t∼= K−,b(projB).

Proof. 1 ⇒ 2. According to Theorem 16.12, we have Kb(projA)
t∼= Kb(projB). By

Lemma 16.15, it is easy to see that K−(projA)
t∼= K−(projB)

2 ⇒ 1. Let X� ∈ K−(projA). Since
⊕

n∈N
τ≤−nX � exists in K−(projA), if X� is

a compact object in K−(projA), then

HomK(Mod A)(X �, τ≤−nX �) = 0

for all but finitely many n. If HomK(Mod A)(X �, τ≤−nX �) = 0, then by Proposi-
tion 4.8, X� ∼= τ≥−n+1X

�⊕τ≤−nX �[−1]. According to Proposition 10.23 X � ∈
K̃

b
(projA). As a consequence, X � is a compact object in K−(projA) if and only

if X � is isomorphic to an object in Kb(projA). Since compactness is a categor-

ical property, we have Kb(projA)
t∼= Kb(projB). By Theorem 16.12, we get the

statement.
The last assertion is trivial by Lemma 16.10.

Lemma 16.17. For P � ∈ C−,b(ProjA), we have isomorphisms in K−,b(ProjA)

hlim
−→

τ≥−iP
� ∼= lim−→ C−,b(Proj A)τ≥−iP

�

∼= lim−→K−,b(Proj A)τ≥−iP
�.

Proof. According to Proposition 11.7, we have the first isomorphism. For Y � ∈
C−,b(ProjA), there is n ∈ Z such that Hi(Y �) = 0 for all i ≤ n. Applying
HomK(Mod A)(−, Y �[j]) to a triangle τ≥−i+1P � → τ≥−iP � → P−i[i] → τ≥−i+1P �[1],
we have an exact sequence

HomK(Mod A)(P−i[i], Y �[j]) → HomK(Mod A)(τ≥−iP
�, Y �[j]) µi−→

HomK(Mod A)(τ≥−i+1P
�, Y �[j]) → HomK(Mod A)(P−i[i], Y �[j + 1]).

By Exercise 6.22, we have

HomK(Mod A)(P−i, Y �[j − i + 1]) ∼= HomA(P−i, Hj−i+1(Y �)) = 0
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for i ≥ j −n + 1, and then µi are epic for i ≥ j − n + 1. By Exercise 11.5, we have
an exact sequence

0 →HomK(Mod A)(lim−→ C−,b(Proj A)τ≥−iP
�, Y �) →

∏
i
HomK(Mod A)(τ≥−iP

�, Y �) →∏
i
HomK(Mod A)(τ≥−iP

�, Y �) → 0.

Hence

lim−→ C−,b(Proj A)τ≥−iP
� ∼= lim−→K−,b(Proj A)τ≥−iP

�.

Proposition 16.18. Let A, B be coherent rings. The following are equivalent.
1. B is derived equivalent to A.

2. D−(mod A)
t∼= D−(mod B).

3. Db(modA)
t∼= Db(modB).

Proof. 1 ⇒ 2, 3. By Proposition 16.16.
3 ⇒ 1. By Corollary 10.13, Db(modA) and Db(modB) are triangle equivalent

to K−,b(projA) and K−,b(projB), respectively. Then we have an equivalence F :
K−,b(projA) → K−,b(projB) and its quasi-inverse G : K−,b(projB) → K−,b(projA).
We may assume that G(B) = Q� : . . . → Q−1 → Q0 and F (A) = P � : . . . →
P n−1 → Pn. By Proposition 11.7, τ≤−1P

� ∼= lim−→τ≥−iτ≤−1P
�. Since G is an equiv-

alence, by Lemma 16.17 Gτ≤−1P � ∼= lim−→ K−,b(Proj A)Gτ≥−iτ≤−1P � in K−,b(projB).
Since Gτ≤−1P � ∈ K−,b(projB), there exists k ∈ Z such that Hk(Gτ≤−1P �) �= 0
and Hj(Gτ≤−1P �) = 0 for all j > k. Let C�

k = Ck(Gτ≤−1P �), then C�
k =

Ck(Gτ≤−1P
�) ∈ K−,b(projA) and HomK(proj A)(Gτ≤−1P

�, C�
k[−k]) �= 0, because A is

coherent. Therefore, there is m ≥ 1 such that HomK(projA)(Gτ≥−mτ≤−1P �, C �
k[−k])

�= 0. Then we have m < 0, because Q� ∈ K[−∞,0](projA). Since

HomK(proj A)(P �, τ≤−1P
�) ∼= HomK(proj A)(A, Gτ≤−1P

�) ∼= H0(Gτ≤−1P
�) = 0,

by Proposition 4.8 τ≥0P � ∼= P �⊕τ≤−1P �[−1]. According to Proposition 10.23, P � ∈
K̃

b
(projA), and hence P �

A is a tilting complex.

17. Two-sided Tilting Complexes

17.1. The Case of Flat k-algebras. Throughout this subsection, k is a commu-
tative ring, A,B,C are k-algebras which are k-flat modules. See Propositions 15.7,
15.8.

Theorem 17.1. Let Ai be an k-algebra with a tilting complex T �
i whose endomor-

phism is isomorphic to Bi (i = 1, 2). Then T �
1

�
⊗kT �

2 is a tilting complex for A1⊗kA2

whose endomorphism is isomorphic to B1⊗kB2.

Proof. Since T j
i is Ai-projective, by Proposition 15.1 we have isomorphisms for all

i, j, k, l

HomA1⊗kA2(T
i
1⊗kT j

2 , T k
1 ⊗kT l

2) ∼= HomA1(T
i
1,HomA1(T

j
2 , T k

1 ⊗kT l
2))

∼= HomA1(T
i
1,A1)⊗Aop

1
T k

1 ⊗kT l
2⊗A2 HomA2(T

j
2 ,A2)

∼= HomA1(T
i
1, T

k
1 )⊗k HomA2(T

j
2 , T l

2).
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This induces an isomorphism between quadruple complexes. Since T �
i are bounded

complexes, we have an isomorphism between complexes

Hom�
A1⊗kA2

(T �
1

�
⊗k T �

2, T
�
1

�
⊗k T �

2)
∼→ Hom�

A1
(T �

1, T
�
1)

�
⊗k Hom�

A2
(T �

2, T
�
2).

Since Ai, Bi are k-flat, we have isomorphisms in D(Mod k)

Hom�
A1

(T �
1, T

�
1)

�
⊗k Hom�

A2
(T �

2, T
�
2) ∼= Hom�

A1
(T �

1, T
�
1)

�
⊗ L

k Hom�
A2

(T �
2, T

�
2)

∼= EndK(Mod A1)(T
�
1)

�
⊗ L

k EndK(Mod A2)(T �
2)

∼= B1

�
⊗ L

k B2
∼= B1⊗kB2.

Thus HomK(Mod A1⊗kA2)(T
�
1

�
⊗k T �

2, T
�
1

�
⊗k T �

2[i]) = 0 for i �= 0. It is easy to see that

EndK(Mod A1⊗kA2)(T
�
1

�
⊗k T �

2) ∼= B1⊗kB2 as k-algebras.
Let F = A1⊗k− : Kb(projA2) → Kb(projA1⊗kA2). Since addT �

2 generates

Kb(projA2), add A1⊗kT �
2 generates Kb(projA1⊗kA2). Let G = −

�
⊗kT �

2 : Kb(projA1)
→ Kb(projA1⊗kA2). Since addT �

1 generates Kb(projA1), the triangulated full sub
category generated by addT1⊗kT �

2, contains add A1⊗kT �
2. Therefore addT1⊗kT �

2

generates Kb(projA1⊗kA2).

Proposition 17.2. Let A be a k-algebra which is derived equivalent to a k-algebra
B. Then we have isomorphisms

HH�
k(A,A) = Ext�Aop⊗kA(A, A)

∼= Ext�Bop⊗kB(B,B)
= HH�

k(B,B).

Here HH�
k means Hochschild homology.

Proof. Let T � be a tilting complex for A whose endomorphism ring is isomorphic
to B. By Theorem 17.1, T �⊗kT �∗ is a tilting complex for Aop⊗kA whose endo-
morphism ring is isomorphic to Bop⊗kB, where T �∗ = HomA(T �, A) According to
Lemma 16.5, there is a equivalence F : Db(Mod Bop⊗kB) → Db(Mod Aop⊗kA)
which sends Bop⊗kB to T �⊗kT �∗. Let X � ∈ Db(ModBop⊗kB) such that FX� ∼= A

in Db(ModAop⊗kA). Then we have

Hn(X�) ∼= HomDb(Mod Bop⊗kB)(B
op⊗kB,X �[n])

∼= HomDb(Mod Aop⊗kA)(T
�⊗kT �∗,A[n])

∼= HomDb(Mod A)(T
�, T �∗∗[n])

∼= HomDb(Mod A)(T
�, T �[n]).

Hence X� ∼= B in Db(Mod Bop⊗kB).

Definition 17.3. Let A be a k-algebra which is derived equivalent to a k-algebra
B, and P � a tilting complex for A whose endomorphism ring is isomorphic to B.
Then we have a triangle equivalence F : Db(ModB) → Db(Mod A) which sends
B to P �. We take a complex Q� of Kb(projB) which is isomorphic to F−1A in
Kb(ModB), and P �∗ = HomA(P �,A), Q� � = HomB(Q� ,B). Then a tilting complex
B⊗kP � induces the triangle equivalence

Db(Mod Bop⊗kB) → Db(ModBop⊗kA).
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Db(ModAop⊗kA) Db(ModBop⊗kA) Db(ModAop⊗kB) Db(ModBop⊗kB)

A T � T∨� B

Let T � be the image of B of Db(Mod Bop⊗kB). Also, a ti lting complex A⊗kQ��

induces the triangle equivalence

Db(ModAop⊗kA) → Db(ModAop⊗kB).

Let T∨� be the image of A of Db(ModAop⊗kA).

Proposition 17.4. The following hold.

1. ResAT � ∼= P � in Db(ModA).
2. ResBop T � ∼= Q�� in Db(ModBop ).
3. ResBT∨� ∼= Q� in Db(Mod B).
4. ResAop T∨� ∼= P �∗ in Db(Mod Aop ).

Proof. 1. We have isomorphisms of functors K−(projA) → Modk

HomD(Mod A)(−, ResAT �) ∼= HomD(Mod Bop⊗kA)(Bop⊗k−, T �)
∼= HomD(Mod Aop⊗kA)(P �∗⊗k−,A)
∼= HomD(Mod A)(−, P �∗∗)
∼= HomD(Mod A)(−, P �).

2. We have isomorphisms of functors K−(projA) → Mod k

HomD(Mod Bop )(−, ResBop T �) ∼= HomD(Mod Bop⊗kA)(−⊗kA,T �)
∼= HomD(Mod Bop⊗kB)(−⊗kQ� ,B)
∼= HomD(Mod Bop)(−,Q��).

3, 4. Similarly.

Lemma 17.5. There is an isomorphism φ : P � → ResAT � in D(ModA) such that
φf = λ(f)φ for all f ∈ EndD(Mod A)(P �), where λ : B → EndD(Mod A)(ResAT �) is
the left multiplication morphism.

Proof. For f ∈ EndD(Mod A)(P �), by the above isomorphisms, we have a commuta-
tive diagram

HomD(Mod A)(−, ResAT �) ∼−−−−−→ HomD(Mod Bop⊗kA)(B
op⊗k−, T �) ∼−−−−−→ HomD(Mod A)(−, P �)

Hom(−,λ(f)) Hom(fop⊗−,A) Hom(−,f)

HomD(Mod A)(−, ResAT �) ∼−−−−−→ HomD(Mod Bop⊗kA)(B
op⊗k−, T �) ∼−−−−−→ HomD(Mod A)(−, P �).

Theorem 17.6. For ∗ = nothing, +,−, b, the ∂-functor

−
�
⊗ L∗

B T � : D∗(ModB) → D∗(Mod A)

is an triangle equivalence, and its quasi-inverse is

R∗ HomA(T �,−) ∼= −
�
⊗ L∗

A T∨� : D∗(ModA) → D∗(Mod B).
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Proof. For a complex X� ∈ D∗(Mod B), X � �
⊗L∗

B T � ∼= X� �
⊗B Q�� in D(Mod k). Then

−
�
⊗ L∗

B T � is a way-out in both directions. Similarly, R∗ HomA(T �,−), −
�
⊗ L∗

A T∨�

are way-out in both directions. Therefore we have the above functors between the
above derived categories. By Proposition 17.4, We have

ResAT � �
⊗ L∗

A ResAop T∨� ∼= P � �
⊗ L∗

A P �∗

∼= EndD∗(Mod A)(P �)
= B

By Lemma 17.5, we have T � �
⊗ L∗

A T∨� ∼= B in D(ModBop⊗kB). Similarly we have

T∨� �
⊗L∗

B T � ∼= A in D(ModAop⊗kA). Then −
�
⊗L∗

B T � is an equivalence. By adjoint-

ness, we have R∗ HomA(T �,−) ∼= −
�
⊗ L∗

A T∨�.

Definition 17.7 (Biperfect Complex). A complex X� ∈ D(Mod Aop⊗kB) is called
a biperfect complex if ResAX � ∈ D(ModA)perf and ResBop X� ∈ D(ModBop)perf .
We denote by D(ModAop⊗kB)biperf the triangulated full subcategory of
D(ModAop⊗kB) consisting of biperfect complexes.

Definition 17.8. A bimodule complex BT �
A ∈ K(ModBop⊗kA) is called a two-

sided tilting complex provided that
1. BT �

A is a biperfect complex.
2. There exists a biperfect complex AT∨�

B such that

(a) BT � �
⊗ L

AT∨�
B

∼= B in Db(ModBop⊗kB),

(b) AT∨� �
⊗ L

BT �
A
∼= A in Db(ModAop⊗kA).

We call AT∨�
B the inverse of BT �

A.
R∗ HomA(T �,−) : D∗(ModA) → D∗(Mod B) is called a standard equivalence,

where ∗ = nothing, +,−, b.

Theorem 17.9. The following are equivalent.

1. D(ModA)
t∼= D(ModB).

2. D+(ModA)
t∼= D+(ModB).

3. A is derived equivalent to B.
4. There exists a two-sided tilting complex BT �

A.

Proof. By Theorem 17.6 and the dual of Lemma 16.10.

Corollary 17.10. Let BT �
A and CS�

B be two-sided tilting complexes. Then CS�
B

�
⊗

L
BT �

A is a two-sided tilting complex.

17.2. The Case of Projective k-algebras. Throughout this subsection, k is
a commutative ring, A, B,C are k-algebras which are k-projective modules. See
Propositions 15.7, 15.8.

Lemma 17.11. Let X, P be B-A-bimodules such that ResAP is a finitely gener-
ated projective A-module. Then the following hold.

1. For a right A-module M and a left A-module N , we have B-module morphisms

M⊗A HomA(X,A) → HomA(X, M) (m⊗f �→ (x �→ mf(x))),

X⊗AN → HomA(HomA(X,A), N) (x⊗n �→ (f �→ f(x)n)).
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2. We have a functorial isomorphism of functors ModA → Mod B

−⊗A HomA(P, A) ∼= HomA(P,−).

3. We have a functorial isomorphism of functors ModAop → ModBop

P⊗A− ∼= HomA(HomA(P,A),−).

Lemma 17.12. Let X� ∈ D∗(Mod Bop⊗kA) with ResAX � ∈ D∗(ModA)perf , where
∗ = nothing, +,−, b. Then the following hold.

1. We have a ∂-functorial isomorphism of ∂-functors D∗(Mod Aop⊗kA) →
D∗(ModAop⊗kB)

−
�
⊗ L∗

A RHom�
A(X �,A) ∼= R∗ Hom�

A(X�,−).

2. We have a ∂-functorial isomorphism of ∂-functors D∗(Mod Aop⊗kA) →
D∗(ModBop⊗kA)

X � �
⊗ L∗

A − ∼= R∗ Hom�
A(RHom�

A(X �,A),−).

Proof. 1. By Lemma 17.11, we have a ∂-functorial morphism of ∂-functors
D∗(ModAop⊗kA) → D∗(Mod Aop⊗kB)

φ : −
�
⊗ L

AR Hom�
A(X �,A) → RHom�

A(X �,−).

Let Q� ∈ Kb(projA) which has a quasi-isomorphism Q� → ResAX �. By Lemma
17.11, we have a ∂-functorial isomorphism of ∂-functors D∗(Mod A) → D∗(Modk)

ψ : −
�
⊗A Hom�

A(Q� ,A) ∼→ Hom�
A(Q� ,−).

Since

Reskφ ∼= ψ,

and H�( ψ) is an isomorphism, φ is a functorial isomorphism.
2. Similarly.

Corollary 17.13. Let T � and T∨� be a two-sided tilting complex and its inverse.
Then we have isomorphisms in Db(ModBop⊗kA)

T∨� ∼= RHom�
A(T �,A)

∼= RHom�
B(T �, B).

Theorem 17.14. For a bimodule complex BT �
A, the following are equivalent.

1. BT �
A is a two-sided tilting complex.

2. BT �
A satisfies that

(a) BT �
A is a biperfect complex,

(b) The right multiplication morphism ρA : A → RHom�
B(T �, T �) is an iso-

morphism in D(ModAop⊗kA),
(c) The left multiplication morphism λB : B → RHom�

A(T �, T �) is an iso-
morphism in D(ModBop⊗kB).

3. BT �
A satisfies that

(a) BT �
A is a biperfect complex,

(b) HomDb(Mod Bop )(T �, T �[i]) = 0 for i �= 0,
(c) HomDb(Mod A)(T �, T �[i]) = 0 for i �= 0,
(d) The right multiplication morphism ρA induces a ring isomorphism A →
EndDb(Mod Bop )(T �)op ,
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(e) The left multiplication morphism λB induces a ring isomorphism B →
EndDb(Mod A)(T �).

Proof. 1 ⇒ 3. By Corollary 17.13, Lemma 17.12, we have isomorphisms in
D(ModBop⊗kB)

RHom�
A(T �, T �) ∼= BT � �

⊗ L
AR Hom�

A(T �, A)
∼= BT � �

⊗ L
AT∨�

B∼= B.

And we have an isomorphism in D(Mod Aop⊗kA)

RHom�
B(T �, T �) ∼= RHom�

B(T �,B)
�
⊗ L

BT �
A

∼= AT∨� �
⊗ L

BT �
A∼= A.

Since −⊗L
BT �

A is an equivalence, we have a commutative diagram

HomD(Mod B)(BB ,BB) ∼−−−−→ HomD(Mod A)(B⊗L
BT �

A, B⊗L
BT �

A)	 �
B

λB−−−−→ HomD(Mod A)(T �
A, T �

A)

where all vertical arrows are isomorphisms. Then λB is an isomorphism. Similarly,
ρA is an isomorphism.

3 ⇒ 2. It is easy to see that we have a morphism λA : A → RHom�
B(T �, T �) in

D(ModAop⊗kA). By taking cohomologies, we get the condition (b) of 2. Similarly,
we get the condition (c) of 2.

2 ⇒ 1. Let T∨� = RHom�
A(T �,A), then we have isomorphisms

BT � �
⊗ L

AT∨�
B = BT � �

⊗ L
ARHom�

A(T �,A)
∼= RHom�

A(T �, T �)
∼= B.

By Proposition 15.5 2, we have an isomorphism

RHom�
A(T �,A) ∼= RHom�

A(T �,RHom�
B(T �, T �))

∼= RHom�
B(T �, RHom�

A(T �, T �))
∼= RHom�

B(T �, B).

Then we have

AT∨� �
⊗ L

BT �
A
∼= RHom�

B(T �,B)
�
⊗ L

BT �
A

∼= RHom�
B(T �, T �)

∼= A.

Theorem 17.15. Let (Ai,Bi) be derived equivalent k-algebras, T �
i two-sided tilting

complexes in Db(ModBop
i ⊗kAi) and their inverses T∨�

i (i = 0, 1, 2). Then we have
the following commutative diagrams.
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1.

Db(ModAop
0 ⊗kA1)× Db(Mod Aop

1 ⊗kA2)
−

�
⊗L

A1
−

−−−−−→ Db(ModAop
0 ⊗kA2)

F0×F1

� �F2

Db(ModBop
0 ⊗kB1)× Db(Mod Bop

1 ⊗kB2)
−

�
⊗L

B1
−

−−−−−→ Db(Mod Bop
0 ⊗kB2).

2.

Db(ModAop
1 ⊗kA2)× Db(Mod Aop

0 ⊗kA2)
RHom�

A2
(−,−)

−−−−−−−−−−→ Db(ModAop
0 ⊗kA1)

F1×F2

� �F0

Db(ModBop
1 ⊗kB2)× Db(Mod Bop

0 ⊗kB2)
RHom�

B2
(−,−)

−−−−−−−−−−→ Db(Mod Bop
0 ⊗kB1).

Here F0 = T �
0

�
⊗L

A0
−

�
⊗L

A1
T∨�

1 , F1 = T �
1

�
⊗L

A1
−

�
⊗L

A2
T∨�

2 , F2 = T �
0

�
⊗L

A0
−

�
⊗L

A2
T∨�

2 .

Proof. 1. We have isomorphisms

(T �
0

�
⊗ L

A0
−

�
⊗L

A1
T∨�

1 )
�
⊗ L

B1
(T �

1

�
⊗ L

A1
−

�
⊗L

A2
T∨�

2 )

∼= (T �
0

�
⊗ L

A0
−)

�
⊗ L

A1
(T∨�

1

�
⊗ L

B1
T �

1)
�
⊗ L

A1
(−

�
⊗ L

A2
T∨�

2 )
∼= (T �

0

�
⊗ L

A0
−)

�
⊗ L

A1
(A1)

�
⊗ L

A1
(−

�
⊗ L

A2
T∨�

2 )
∼= (T �

0

�
⊗ L

A0
−)

�
⊗ L

A1
(−

�
⊗ L

A2
T∨�

2 ).

2. Let X � ∈ Mod Aop
0 ⊗kA2, Y � ∈ ModAop

1 ⊗kA2, Z � ∈ ModAop
0 ⊗kA2. Since we

have an adjoint isomorphism

HomD(Mod Aop
0 ⊗kA2)(X

� �
⊗ L

A1
Y �, Z�) ∼= HomD(Mod Aop

0 ⊗kA1)(X
�,R Hom�

A2
(Y �, Z �)),

we get the assertion by 1.

17.3. The Case of Finite Dimensional k-algebras. Throughout this subsec-
tion, we assume k is a field, and all algebra are finite dimensional k-algebras. We
denote Dk = Homk(−, k).

Definition 17.16 (Nakayama Functor). A triangle auto-equivalence νA = −
�
⊗

L
ADkA : Db(mod A) → Db(modA) is called a Nakayama functor.

Proposition 17.17. Let (A,B) be derived equivalent k-algebras, T � a two-sided
tilting complex in Db(ModBop⊗kA) and its inverse T∨�. Then we have a commu-
tative diagram

D−(Mod A) νA−−−−→ D−(ModA)

F

� �F

D−(Mod B) νB−−−−→ D−(ModB),
where F is a standard equivalence.

Proof. By Proposition 17.2, the standard equivalence G : Db(ModAop⊗kA) →
Db(ModBop⊗kB) sends A to B.

By the case of A1 = Aop⊗kA, B1 = Bop⊗kB and A0 = A2 = B0 = B2 = k in
Theorem 17.15 2, we have GDkA ∼= DkB.
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By the case of A1 = A2 = A, B1 = B2 = B and A0 = B0 = k in Theorem 17.15
1, we have FνA = νBF .

Corollary 17.18. Let A be a finite dimensional k-algebra which is derived equiv-
alent to B. If A is a symmetric algebra, then B is a symmetric algebra.

Lemma 17.19. Let A, B be finite dimensional self-injective k-algebras, APB is
Aop⊗kB-projective, BVA is A-projective and B-projective. The following hold.

1. Bop⊗kA is a self-injective algebra.
2. HomA(P,A) is Bop⊗kA-projective.
3. HomA(V, A) is A-projective and B-projective.
4. AP⊗BVA is Aop⊗kA-projective.
5. X⊗APB is B-projective for any X ∈ ModA.
6. Y⊗BVA is A-projective for any Y ∈ ProjB.

Proof. By Propositions 15.1, 15.3.

Proposition 17.20. Let A and B be derived equivalent self-injective k-algebras.

Then K(mod A)
t∼= K(mod B), and there are bimodules AMB and BNA such that

−⊗AM : modA → modB and−⊗BN : modB → mod A

induce an equivalence modA ∼= modB.

Proof. Let T � be a two-sided tilting complex in Db(ModBop⊗kA) and T∨� its in-
verse. By taking a Bop⊗kA-projective resolution of T �, and its shifting and trun-
cation, we may assume T � is isomorphic to

S� : S−n → S−n+1 → . . . → S0

where Si are Bop⊗kA-projective (−n < i ≤ 0), and S−n is A-projective and B-
projective. Then T∨� ∼= HomA(S�,A) in Db(Mod Aop⊗kB), and we have

S� �
⊗A HomA(S�,A) ∼= B in Kb(ModBop⊗kB),

HomA(S�,A)
�
⊗B S� ∼= A in Kb(Mod Aop⊗kA).

These imply that K(modA)
t∼= K(mod B). Let M = Ωn(HomA(S−n,A)), the nth

syzygy as as a Bop⊗kA-module and N = Ω−n(S−n), the −nth syzygy as as a
Aop⊗kB-module. Since HomA(S−n,A) is A-projective and B-projective, M is A-
projective and B-projective. Similarly, N is A-projective and B-projective. Then

−⊗AM : modA → modB and−⊗BN : mod B → modA

induce triangle functors between modA and modB. By Lemma 17.19, all terms

but the term HomA(S−n, A)⊗AS−n of a double complex HomA(S�, A)
��
⊗B S� are

Aop⊗kA-projective. Therefore A is a direct summand of
⊕

p=q HomA(Sp,A)⊗BSq

as a Aop⊗kA-module. For each X ∈ mod A, we have isomorphisms in modA

X ∼= X⊗AA
∼= X⊗A HomA(S−n,A)⊗BS−n

∼= ω−n(X⊗AM⊗BS−n)
∼= ωnω−n(X⊗AM⊗BN)
∼= X⊗AM⊗BN,
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where ω is the loop space functor on modA. Similarly, for each Y ∈ modB, we
have an isomorphism in modB

Y ∼= Y⊗BN⊗AM.

Proposition 17.21. Let A and B be indecomposable symmetric k-algebras, X � a

biperfect complex in Db(ModBop⊗kA), and X∨� = Hom�
k(X �, k). If X� �

⊗L
AX∨� ∼= B

in Db(ModBop⊗kB), then X � is a two-sided tilting complex.

Proof. Since we have isomorphisms

X∨� ∼= RHom�
A(X�, A)

∼= RHom�
B(X �,B),

by Proposition 15.5, lemma 17.12, F = −
�
⊗ L

BX� : Db(modB) → Db(mod A) and

F∨ = −
�
⊗ L

AX∨� : Db(modA) → Db(modB) are both left and right adjoint to
one another. By adjunction arrows of adjoint pairs (F, F∨), (F∨, F ), we have

morphisms α : A → X∨� �
⊗ L

BX �, β : X∨� �
⊗ L

BX� → A. By Proposition 1.17, we

have a split monomorphism αF : X � → X� �
⊗ L

AX∨� �
⊗ L

BX �, a split epimorphism

βF : X � �
⊗ L

AX∨� �
⊗ L

BX� → X�. Since Db(modBop⊗kA) is a Krull-Schmidt cate-

gory by Corollary 11.19, X� �
⊗L

AX∨� ∼= B implies that αF , βF are isomorphisms in
Db(modBop⊗kA). If βα is not an isomorphism, then this contradicts (βα)F is an

isomorphism. Therefore A is a direct summand of X∨� �
⊗L

BX� in Db(modAop⊗kA).

Since X∨� �
⊗ L

BX� �
⊗ L

AX∨� �
⊗ L

BX � ∼= X∨� �
⊗ L

BX�, we have A ∼= X∨� �
⊗ L

BX� in
Db(modAop⊗kA).

Proposition 17.22. Let A be a symmetric k-algebra which has no simple projec-

tive A-module, e an idempotent of A, and P � : P−1 d−1

−−→ P 0 = Ae⊗keA
µ−→ A,

where µ is the multiplication morphism. Then P � is a tilting complex. Moreover,
AP �

A is a two-sided tilting complex if and only if dimk eAe = 2.

Proof. Since DkP � = (DkA → Dk(Ae⊗keA)) ∼= (A → Ae⊗keA), Hom��
A(P �

A, P �
A) ∼=

P � ��
⊗ ADkP � has the form

Ae⊗keA −−−−→ A� �
Ae⊗keAe⊗keA −−−−→ Ae⊗keA,

where the left vertical arrow is monic and the bottom horizontal arrow is epic.
Then Hi(Hom�

A(P �
A, P �

A)) = 0 for i �= 0. Since

P � = (eAe⊗keA → eA)⊕((1 − e)Ae⊗keA → (1 − e)A)

and dimK eAe = n ≥ 2,

P � ∼= (eAn−1 → O)⊕((1 − e)Ae⊗keA → (1 − e)A),
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and then P � generates Kb(projAA). By the above diagram, we have an isomorphism
in modAop⊗kA

Ae⊗keA⊕H0(P � �
⊗A DkP �)⊕Ae⊗keA ∼= Ae⊗keAe⊗keA⊕A.

By the Krull-Schmidt Theorem, we have

H0(P � �
⊗A DkP �) ∼= A⊕(Ae⊗keA)n−2.

18. Cotilting Bimodule Complexes

Throughout this section, unless otherwise stated, k is a commutative ring, A, B,
C are k-algebras which are k-projective modules. See Propositions 15.7, 15.8.

Definition 18.1 (Cotilting Bimodule Complexes). Let A be a right coherent k-
algebra and B a left coherent k-algebra. A complex BU �

A ∈ Db(Mod Bop⊗kA) is
called a cotilting B-A-bimodule complex provided that it satisfies

1. ResAU � ∈ Db
c (Mod A)fid and ResBop U � ∈ Db

c (ModBop )fid.
2. HomD(Mod A)(U �, U �[i]) = 0 for all i �= 0.
3. HomD(Mod Bop )(U �, U �[i]) = 0 for all i �= 0.
4. the left multiplication morphism B → EndD(Mod A)(U �) is a ring isomorphism.
5. the right multiplication morphism A → EndD(Mod Bop )(U �)op is a ring isomor-

phism.
In case of B = A, we will call a coti lting A-A-bimodule complex a dualizing

A-bimodule complex.

Proposition 18.2. Let A be a right coherent k-algebra and B a left coherent k-
algebra, and BU �

A ∈ Db(ModBop⊗kA) a cotilting B-A-bimodule complex. Then

R∗ Hom�
A(−,U �) : D∗

c(ModA) → D†
c(ModBop )

and

R† Hom�
B(−, U �) : D†

c(ModBop) → D∗
c(ModA)

induce the duality, where (∗, †) = (nothing, nothing), (+,−), (−,+), (b, b).

Proof. Since ResAU � ∈ Db
c (Mod A)fid, by Proposition 10.21 R∗ Hom�

A(−, U �) is
way-out in both directions. Since R∗ Hom�

A(A,U �) ∼= ResBop U � ∈ D†
c(ModBop ),we

have R∗ Hom�
A(−,U �) : D∗

c(Mod A) → D†
c(Mod Bop) by Proposition 12.12. Simi-

larly we have R† Hom�
B(−, U �) : D†

c(ModBop ) → D∗
c(ModA). Since

(R∗ Hom�
A(−, U �),R† Hom�

B(−, U �))

is a right adjoint pair, we have adjunction arrows

η : 1D∗
c(Mod A) → R† Hom�

B(−, U �) ◦ R∗ Hom�
A(−, U �)

θ : 1D∗
c (Mod Bop ) → R∗ Hom�

A(−,U �) ◦ R† Hom�
B(−, U �).

It is not hard that we have a commutative diagram in D∗
c(ModAop⊗KA)

A
η(A)−−−−→ R† Hom�

B(R∗ Hom�
A(A, U �), U �)∥∥∥ ��

A
ρA−−−−→ R† Hom�

B(U �, U �),
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Then η(A) is an isomorphism. By Proposition 12.11, η is an isomorphism. Similarly,
θ is an isomorphism.

Lemma 18.3 (Piled Resolutions Lemma). Let A be an abelian category satisfying
the condition Ab4* with enough injectives, and let C �� be a double complex with
Cp,q = 0 (p < 0 or q < 0), C �j → I �j quasi-isomorphisms with I�j : 0 → I−s,j →
I−s+1,j → . . . ∈ K+(InjA) for all i. Then, there is a quasi-isomorphism from

TotC�� =
∧

TotC�� to a complex J � of the following form in K+(InjA)

Jn =

{
O if n < −s⊕

i+j=nIi,j if n ≥ −s

Proof. For a double complex C ��, we have a sequence of morphisms {Tot τ II
≤nC �� →

Tot τ II
≤n−1C

��}. By induction on n ≥ 0, we construct complexes V �
n and morphisms

of triangles in K+(A)

Tot τ II
≤nC�� −−−−→ Tot τ II

≤n−1C
�� −−−−→ C �n[1 − n] −−−−→ Tot τ II

≤nC ��[1]� � � �
V �

n −−−−→ V �
n−1 −−−−→ I �j[1 − n] −−−−→ V �

n[1]

where all vertical arrows are quasi-isomorphisms. If n = 0, then we take V �
0 = I �0.

Let n > 0. Since V �
n−1 → Tot τ II

≤n−1C
�� and C �n[1 − n] → I�n[1 − n] are quasi-

isomorphisms, we choose a morphism V �
n−1

gn−1−−−→ I �j[1 − n] in C(A) such that

Tot τ II
≤n−1C

�� −−−−→ C �n[1 − n]� �
V �

n−1

gn−1−−−−→ I �j[1 − n]

is commutative in K+(A). We take V �
n = M�(gn−1)[−1] in C(A). Then V �

n → V �
n−1 is

a term-split epimorphism and have the above morphism of triangles. By Proposition
11.7, we have isomorphisms in D+(A)

TotC�� =
∧

TotC ��

∼= lim←−Tot τ II
≤nC ��

∼= hlim
←−

Tot τ II
≤nC ��

∼= hlim
←−

V �
n

∼= lim←−V �
n.

By the construction of V �
n, we have the required complex.

Theorem 18.4. Let A be a right noetherian k-algebra and B a left coherent k-
algebra, and BU �

A ∈ Db(ModBop⊗kA) a cotilting B-A-bimodule complex. If I � ∈
K+(InjA) is quasi-isomorphic to ResAU � in K+(Mod A), then I � contains all inde-
composable injective A-modules.

Proof. According to Proposition 18.2 and Example 10.14, for any X � ∈ Db
c (ModA),

there exists P � ∈ K−(projBop) such that

Hom�
B(P �, U �) ∼= RHom�

B(P �, U �)
∼= X �.
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For any P i, it is easy to see HomB(P i, U �) ∈ addU �
A. Then HomB(P i, U �) ∈ add I�.

By piled resolutions lemma, we have a quasi-isomorphism X� → J � in K+(ModA)
with all J i ∈ Add

(∐
i∈Z

Ii
)
. Since A is noetherian, J i is A-injective. We take

X � = A/p where p is any right ideal of A. Since J � in K+(ModA), it is easy to see
that we have a monomorphism A/p → J0. Hence the injective envelope E(A/p) is
a direct summand of J0.

Corollary 18.5 (Like-Corollary). Let A be a right noetherian and left coherent
ring with inj dim AA, inj dimAA < ∞. Then any injective resolution of a right
A-module AA contains all indecomposable injective A-modules.

Proof. By the same technique in Proposition 18.2, Rb HomA(−, A) : Db(modA) →
Db(modAop) and Rb HomA(−,A) : Db(modAop) → Db(modA) induce a duality.
By the above proof, we get the statement.
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