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1. CATEGORIES AND FUNCTORS

Definition 1.1 (Category). We define a category C by the following data:

1. A class ObC of elements called objects of C.

2. For a ordered pair (X,Y) of objects a set Home (X, Y") of morphisms is given
such that Home (X, Y)NHome (X', Y) = ¢ for (X,Y) # (X',Y”) (an element
f of Home(X,Y) is called a morphism, and denote by f: X —Y).
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3. For each triple (X,Y, Z) of objects of C a map
0(X,Y,Z) : Home(X,Y) x Home (Y, Z) — Home (X, Z)
(0 is called the composition map) is given.
4. The composition map 6 is associative.

5. For each object X of C, there is a morphism 1x : X — X such that for any
g:Y =X h:X — Z we have 1xg=g,hlx = h.

X € ObC (often X € C) means that X is an object of C.

Example 1.2. The following often appear in this note.
1. Get is the category consisting of sets as objects and maps as morphisms.
2. 2Ab is the category consisting of abelian groups as objects and group mor-
phisms as morphisms.
3. For aring A, Mod A is the category consisting of right A-modules as objects
and A-homomorphisms as morphisms.

Definition 1.3 (Opposite Category). For a category C, the opposite category CP
of C is defined by

1. ObC = ObC.
(for X € C, we denote by X°P € C°P the same object)
2. For X, Y°P € Ob(CP,

Homger (X, Y°P) = Home (Y, X).

(for f € Hom¢(Y, X), we denote by fP € Homeor (X°P,YP))
3. The composition map 6°P is defined by 6°P(f°P, g ) = 0(g, f)°P.

Definition 1.4. Let f: X — Y be a morphism in a category C.

1. f is called a monomorphism if fu = fv implies u = v.

2. f is called an epimorphism if uf = vf implies u = v.

3. f is called a split monomorphism if there is g : Y — X such that gf = 1x.
4. f is called a split epimorphism if there is g : Y — X such that fg = 1y.

5. f is called an isomorphism if there is g : ¥ — X such that gf = 1x and

fg=1y.
We often write — for an epimorphism, and — for a monomorphism.
Definition 1.5 (Functor). For categories C and C’, a covariant functor (resp., con-
travariant functor) F : C — C’ consists of the following data:

1. Amap F: ObC — ObC('".
2. For X, Y € Ob(C, a map

FX,Y : Homc (X, Y) — Homc/(FX, FY)
(resp., Fxy : Hom¢(X,Y) — Home (FY, FX))
such that F(gf) = F(g)F(f) (resp., F(gf) = F(f)F(9)), F(1x) = lr(x).
Here we write simply F'(f) instead of Fix y (f).
Example 1.6. In a category C, for X € C, we define the covariant (resp., con-
travariant) functor
X i C — Get
(resp., hx : C — Get)

by hX(Y) = Hom¢(X,Y) (resp., hx(Y) = Home (Y, X)).
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Definition 1.7 (Functorial Morphism). For covariant (resp., contravariant) func-
tors F,G : C — C', a functorial morphism « : FF — G consists of the following
data:
1. Foreach X € C, ax : FX — GX in (' is given.
2. For any morphism f: X — Y (resp., f: Y — X) in C, we have the following
commutative diagram in C’

FX 2, GX

F(f)l lG(f)

Fy 2 GY.
In the case that a functorial morphism « is called a functorial isomorphism if ax
are isomorphisms for all X € C.
We denote by Mor(F, G) the collection of all functorial morphisms from F' to G.

Lemma 1.8 (Representable Functor). For a covariant (resp., contravariant) func-
tor F : C — Get, the following are equivalent for C € C.
1. F is isomorphic to h® (resp., h¢).
2. There exists c € F(C) satisfying that
for any X € C and x € F(X), there is a unique f € Home(C,X) (resp.,
f € Home (X, C)) such that x = F(f)(c).

A covariant (resp., contravariant) functor F : C — Get is called representable
if there exists C' € C such that F is isomorphic to h®. Similarly, a contravariant
functor F' : C — Get is called representable if there exists C € C such that F is
isomorphic to he.

Lemma 1.9 (Yoneda’s Lemma). For X € C and a covariant (resp., contravariant)
functor F : C — Get, we have the bijection

0_: FX — Mor(h*X,F) (resp., 6_ : FX — Mor(hx, F)),

where 0_ is defined by (0,)y (f) = F(f)(z) forzx € FX,Y €C, f € hX(Y) (resp.,
f € hx(Y)).
Corollary 1.10. For X,Y € C, we have the bijection
h™ :Home (Y, X) — Mor(hX,hY) (resp., h— : Home(X,Y) — Mor(hx, hy)).
Definition 1.11. Let F': C — C’ be a functor.
1. Fis called fullif Fxy : Hom¢(X,Y) — Home (FX, F'Y') are surjective for all
X,Y ecC.
2. Fis called faithful if Fxy : Home(X,Y) — Home (FX, FY) are injective for
all X,Y eC.

3. Fis called dense if for any Y € C’, there is X € C such that Y is isomorphic
to FX.

Definition 1.12 (Limit, Colimit). Let Z, C be categories and X € C. We denote
by X7 : T — C the constant functor such that Xz(i) = X for all i € Z and
Xz(f) = 1x for all f S HOmI(’L,j)

For a functor F': Z — C, an object X of C is called the colimit colim F' (resp., the
limit lim F) of F provided that for all Y € C we have

Mor(F, Y7) = Home (X, Y)
(resp., Mor (Y7, F') 2 Home (Y, X)).
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Definition 1.13 (Filtered Colimit). A small category Z is called a filtered category
provided that

1. For any 4,7 € 7, there exists k € Z and morphisms ¢ — k, j — k in Z.
2. For two morphisms f,g : © — j, there is a morphism h : j — k such that
hf = hg.
For a covariant (resp., contravariant) functor F': Z — C from a filtered category
T to a category C, the filtered colimit lim F* (resp., the filtered limit lim F') of F" is
the colimit colim F' (resp., the limit lim F').

Definition 1.14 (Product, Coproduct). For a collection {X;};c;r of objects in-
dexed by a set I, X is called a coproduct [[,.;X; (vesp., a product [[;c;X;) of
{X.}icr provided that

1. There are a collection of morphisms {g; : X; — X }ier
(resp., {pi : X — X;}icr).
2. Forany Y € C and {f; : X; — Y}ier (vesp., {p; : Y — X, }icr), there exists
a unique morphism f : X — Y (resp., f: Y — X) with f; = fq¢; (resp.,
fi = pzf) fOI‘ 3,11 Z
If a coproduct [ [, ;X; is also a product, then it is called a biproduct of { X }icr
and denoted by @, ;X;.

Definition 1.15 (Bifunctor). Let C;,Cs and D be categories. The product category
C1 x Cy is the category conssting of pairs (X7, Xs) of objects X3 € Ob(C; and
X5 € ObCy as objects, and pairs (f1, f2) of morphisms f; in C; and f5 in Cs as
morphisms. A bifunctor is the functor F': C; x Co — D.

For bifunctors F,G : C; x Co — D, a bifunctorial morphism o : FF — G is a
functorial morphism of functors C; x Co — D.

Then a bifunctor F': C; X Co — D consists of the following data:

1. For X3 € 4, F(X1,—) : C2 — D is a functor.

2. For X5 € Co, F(—, X3) : C; — D is a functor.

3. For a morphism f; : X1 — Y1 in Cy, F(f1,—) : F(X1,—-) —» F(Y1,—-) is a
functorial morphism.
(or equivalently, for a morphism f5 : Xo — Y52 in Cy, F(—, f2) : F(—, X2) —
F(—, X3) is a functorial morphism.)

And a bifunctorial morphism « : F' — G consists of the following data:

1. For each (Xl,XQ) (S Cl XCQ, Oé(X17X2) . F(Xl,XQ) — G(Xl,XQ) inDis given.
2. For X; € C1, a(x,,—) : F(X1,—) = G(X1,—) is a functorial morphism.
3. For X5 € Ca, a(_ x,) : F'(—,X2) — G(—, X2) is a functorial morphism.
In the case that a bifunctorial morphism « is called a bifunctorial isomorphism if
a(x,,x,) are isomorphisms for all (X1, X3) € C1 x Ca.

Definition 1.16 (Adjoint). Let F': C — C', G : C' — C be covariant functors. We
say that F' is a left adjoint of G (or G is a right adjoint of F') (denote by F - G) if
there is a bifunctorial isomorphism #(—, ?) : Homes (F—,7) — Home(—, G7).
In this case, let ox = (X, FX)(lpx) and 7v = t(GY,Y) (lgy) for X € C,
Yel'. (0:1¢c - GF and 7 : FG — 1¢ are called the adjunction arrows.)

For contravariant functors F' : C — C', G' : ' — C, a pair (F',G) is called a
right adjoint pair if there is a bifunctorial isomorphism ¢'(—,?) : Home/ (—, F'7) —
Home(?,G'—). There are adjunction arrows o : 1¢ — G'F’ and 7: 1¢» — F'G.
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Remark 1.17. According to Corollary 1.10, it is easy to see that a right (resp.,
left) adjoint is uniquely determined up to isomorphism. And in the above, we have

GrooG =1¢ and TFoFo = 1p.

Theorem 1.18. For a covariant functor F : C — C’, the following hold.

1. F has a right adjoint if and only if hy o F' : C — Get is representable for any
Yecl.
2. F has a left adjoint if and only if hX o F : C — Get is representable for any
Xecl.
Theorem 1.19. Let F : C — C’, G : C' — C be covariant functors such that F' - G.
Then the following are equivalent.

1. G is fully faithful.
2. The adjunction arrow 7 : FG — 1¢/ is a functorial isomorphism.

Sketch.
Home(X,Y)

Gx,yl W

Home (GX,GY) — Hom¢(FGX,Y)
O

Theorem 1.20 (Equivalence). For a functor F': C — C’, the following are equiv-
alent.

1. F s fully faithful and dense.
2. There is a functor G : C' — C such that GF = 1¢ and FG = 1¢/.

In this case, F is called an equivalence and we say that C and C' are equivalent.
Theorem 1.21. Let F': C — C' be a covariant functor and let G be a right adjoint
of F'. Then the following hold.

1. F preserves the colimit in C of any functor.
2. G preserves the limit in C' of any functor.

2. ADDITIVE CATEGORIES AND ABELIAN CATEGORIES

In a category C, an object U is called an initial objectif for any X € C Home (U, X)
has only one element, V' is called a terminal object if for any X € C Home(X,V)
has only one element, and O is called a null object if O is initial and terminal.

Definition 2.1 (Preadditive Category). A category C with a null object is called a
preadditive category provided that Home (X, Y) is an abelian group for any X, Y €
C, and that the composition map 6 is bilinear.

Definition 2.2 (Additive functor). Let C, C' be preadditive categories. A covari-
ant (resp., contravariant) functor F' : C — C’ between preadditive categories is
called an additive functor provided that for X,Y € C,

FX,Y : Homc (X, Y) — HOmc/(FX, FY)
(resp., Fxy : Hom¢(X,Y) — Home (FY, FX))

is a group morphism.
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Proposition 2.3. Let {X;}1<i<n be a finite collection of objects of a preadditive
category C. Then the following are equivalent.
1. A coproduct ]!, X; of {Xi}1<i<n exists in C.
2. A product T Xi of {Xi}t1<i<n emists in C.
3. There exist an object X € C and morphisms u; : X; — X, p; + X — X,
(1 <i<n) such that

(a) E?zluipi = lx.
0 ity
(0) biu; = e
1x, if 1 =7.
Moreover, the above coproduct is naturally isomorphic to the above product.

Proposition 2.4. Let F': C — C' be an additive functor between preadditive cate-
gories, {X; }11<i<n a finite collection of objects in C. If the coproduct []_, X; ewists
in C, then the coproduct [ [}, F(X;) exists in C' and is canonically isomorphic to
F(H?:lXi)'

Definition 2.5 (Additive Category). A preadditive category C is called an additive
functor if C satisfies Proposition 2.3 for any finite collection of objects in C.

Example 2.6. Let C be an additive category. For M € C, We define Add M (resp.,
add M) the full subcategory of C consisting of objects which are direct summands
of coproducts (resp., finite coproducts) of copies of M. Then Add M (resp., add M)
is an additive category.

Proposition 2.7 (Compact Object). For an object C' of an additive category C,
the following are equivalent.

L. For any morphism f: C — [],.; X, there exists a factorization

cL ITx = 1] x
JEF =
where F' is a finite subset of I and pg is the canonical inclusion.

2. For any morphism f : C — [[;c; Xi, there exists a finite subset I of I such
that f =3 ;cpujp;f where u; are the structural morphisms and p; are the
canonical projections.

3. The functor h : C — Ab preserves coproducts.

An object C € C is called a compact object (often called a small object) of C if C
satisfies the above conditions.

Exercise 2.8. Show that if a right A-module C is finitely generated, then C' is a
compact object in Mod A.

Corollary 2.9. Let C' be a compact object of an additive category C, and B =
Endc(C). The following hold.

1. For any object X € C,we have isomorphisms

Home(CY, X) = Homp (Home (C, C1), Home (C, X))
= HomB (Homc (C, C)(I),Homc(C’, X))

if a coproduct C1) ezists for a set I.
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2. we have isomorphisms
Home (C, ) & Homp (Home (C, C1), Home (C, C)))
Z Homp (Home (C, C)Y) Home (C, C)))
if coproducts C, C) exist for sets I, J.

Proposition 2.10. Let C be an additive category, C' a preadditive category and
F :C — C' a functor. If F preserves finite coproducts, then F is an additive
functor.

Definition 2.11 (Special Morphisms). Let C be a preadditive category. For f :
X—-Y g: X—Zand h: W — Y, we define the following.

1. (Cok f, cok f) = clim (X L v, X 2 v).
2. (Ker f.ker f) = lim (X L v, x L v).

3. (Im f,im f) = Ker(Y > Cok f, cok f).

4. (Coim f,im f) = Cok(Ker f - X, ker f).

5. PushOut(f, g) = colim (X Lyv,x % 2).
6. PullBack(f,h) = lim (X L Y, W 5 V).

Proposition 2.12. Let C be a preadditive category and let f : X — Y be a mor-
phism in C such that there exist Ker f, Cok f, Coim f and Im f in C. Then there
exists a unique morphism f : Coim f — Im f such that we have the following com-
mutative diagram

x 1. v

coimfl Timf

Coim f L Im f

Definition 2.13 (Abelian Category). An additive category C is called an abelian
category provided that

1. For any morphism f, there exist Ker f and Cok f in C.
2. For any morphism f, the above morphism f is an isomorphism.

Definition 2.14. In an abelian category C, we consider the following sequence
o x I i Iy,

We say that the above sequence is ezact at X* if Ker f* = Im fi=1. If the above
sequence is exact at each X?, then we say that the above sequence is exact.

In the rest of this section, we deal with internal properties of an abelian category
C.

Proposition 2.15 (Snake Lemma). Suppose that the following diagram is commu-
tative
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where all rows are exact. Then we have the following induced exact sequence
Kerz — Kery — Kerz — Cok x — Coky — Cok z.

Moreover, f (resp., g') is monic (resp., epic) if and only if so is Kerz — Kery
(resp., Coky — Cok z).

Proposition 2.16 (Five Lemma). Suppose that the following diagram is commu-
tative

X1 Xo X3 Xy X5
lfl lf2 lfs lfzx lfa
X1 X X3 X4 X5

where all rows are exact. Then the following hold.
1. If f1 is epic, and f2, f1 are monic, then fs is monic.
2. If f5 is monic, and fo, f4 are epic, then fs is epic.
3. If f1 is epic, f5 is monic, and fo, f4 are isomorphisms, then f3 is an isomor-

phism.
Proposition 2.17 (Pull Back 1). Suppose that the following diagram is commuta-
tive
f
X —Y
xl (A) ly
f/
X/ %Y/

Then the following hold.

f /
1. The square (A) is pull back if and only if O — X @ YoX/ N

Y’ is
exact. ;
2. The square (A) is push out if and only if X M YoX' vy 0 s
exact.

Proposition 2.18 (Pull Back 2). Suppose that the following diagram is commuta-
tive

X—Y——7

l (4) l (B) l

X —Y' —7

If the squares (A) and (B) are push out (resp., pull back), then so is the square
(4) + (B).

Proposition 2.19 (Pull Back 3). Suppose that the following diagram is pull back
(resp., push out)

x oy

Then the following hold.
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1. If ' (resp., f) is epic (resp., monic), then the above diagram is also push out
(resp., pull back), and f (resp., f') is also epic (resp., monic).

2. The induced morphism Ker f — Ker [’ is an isomorphism (resp., an epimor-
phism).

3. The induced morphism Cok f — Cok f’' is a monomorphism (resp., an iso-
morphism,).

Proposition 2.20 (Exact Sequence 1). Suppose that the following diagram is com-
mutative

0] X Y Z 0]
b
0] X' Y’ A 0]

where all rows are exact. Then the square
X——Y
| e
X/ > Y/
is pull back and push out (this is called an exact square).

Proposition 2.21 (Exact Sequence 2). Suppose that the following diagram is com-
mutative

0) x L.y 2 .z 0)
= o
9 x Ay 9, g 9

where all rows are exact. Then we have the following commutative diagram

0 X - vex Loy 0
H L s
0 x 1. v =,z )
where o = [£], B= [~y '], ¥ =[10], where all rows are exact.

Proposition 2.22 (Exact Sequence 3). Suppose that the following diagram is com-
mutative

X1 Yi Zy
e /l

Xo Y, Zy

Xz>—|—=Y; —|=Z3
e Ve s
Xy Yy n
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where all rows are short exact sequences. If two of squares

Xi — Xo i — Yo 24y —— 2,

! Lo

Xs — Xy Y35 —— Yy Z3 —— Z4

are exact, then the rest is also exact.

Hint. Consider the following commutative diagram

0O —— X Yy — Z; — 0

l l l

O — Xi®8Xy —— V38, —— 282, —— O

l l l

0O — X5 Yy, — Z; —— 0.

Exercise 2.23. The following hold.
1. For a sequence X ER R Z, if for any M € A,

Hom 4(g,M) Homu(f,M)
—_ —_

0 — Homy(Z, M) Hom 4(Y, M) Hom4 (X, M) — 0

is exact, then

o-xLvy<Lz_o0

is split exact.
2. For a sequence X Ly Z, if for any M € A,

Hom 4 (M, f) Homu(M,g)
—_ —_ 4

0 — Homy (M, X) Hom 4 (M,Y) Homy(M,Z) — 0

is exact, then

o-xLyLz_o
is split exact.

Definition 2.24 (Abn Categories). We define the conditions of an abelian cate-
gory C.
(Ab3) We say that an abelian category C satisfies the condition Ab3 (resp., Ab3*)
if C has coproducts (resp., products) of objects indexed by arbitrary sets.
(Ab4) We say that an abelian category C satisfies the condition Ab4 (resp., Ab4*)
provided that C satisfies the condition Ab3 (resp., Ab3*), and that the co-
product (resp., product) of monics (resp., epics) is monic (resp., epic).
(Ab5) We say that an abelian category C satisfies the condition Ab5 (resp., Ab5*)
provided that C satisfies the condition Ab3 (resp., Ab3*), and that the filtered
colimit (resp., filtered limit) of exact sequences is exact.

Proposition 2.25. The following hold.

1. In a category satisfying AbS* and AbS, any [ — [] is monic.
2. Ab5 = Ab4.



DERIVED CATEGORIES AND REPRESENTATIONS OF ALGEBRAS 11

3. An abelian category C satisfies the condition AbS if and only if C satisfies the
condition AbS3, and for a collection {X;} of subobjects of an object X, we have

Z (X; N X") Z X)nx'
for any subobject X' of X.
Example 2.26. For a ring A, Mod A satisfies the conditions Ab4*, Ab5.

3. KRULL-SCHMIDT CATEGORIES
Let R be a ring with unity and let J(R) be the Jacobson radical of R. We
call R a semiperfect ring if (i) R/ J(R) is a semi-simple Artinian ring, and (ii) any
idempotent of R/ J(R) can be lifted to an idempotent of R.
Lemma 3.1 (Semiperfect Rings 1). The following hold.

1. A ring R is semiperfect if and only if R has a complete set of orthogonal
primitive idempotents e; (1 <i < n) such that each e;Re; is a local ring.

2. A ring R is semiperfect if and only if every finitely generated R-module has a
projective cover.

Lemma 3.2 (Semiperfect Rings 2). Let R be a semiperfect ring and let e; (1 <
i <m) be a complete set of orthogonal primitive idempotents.

1. If f; (1 <i < m)is another complete set of orthogonal primitive idempotents,
then m = n and there is a permutation m such that Rf; = Rer for alli.

2. If f is an idempotent of R, then there are a permutation ™ and an integer t
(1 <t <n) such that Rf = @ﬁleeW(i) and R(1 — f) = @:.L:tHReﬁ(i).

3. If I is a two-sided ideal of R, then R/I is also semiperfect.

Proposition 3.3. Let C be an additive category, and let X € C, B = End¢(X). If
X' is a direct summand of a finite coproduct of copies of X, we have

Home (X', Y) = Homp (Home (X, X'), Home(X,Y))  (f — Home(X, f))
for allY €C.

Proof. There are ¢; : X’ — X and p; : X — X’ (1 <4 < n) such that Y. piq; =
1xs. Let ¢ € Homp(Home(X, X'),Home(X,Y)), for any g € Home (X, X7), we

have
=¢ (Z:;lpi%'g)
=3 opi)ag
= Home (X, Zj=1¢(pi)(b') (9)-

Then Home (X, —) is surjective. Let f € Home(X’,Y) such that Home (X, f) = 0.
Then fp; = 0 for all 4, and hence f = f> i pigi = > o, fpiqi = 0. O
Definition 3.4. Let C be an additive category. An object X of C is called inde-
composable if X =2 X1 @ X5 implies X; = O or X, = O.

Definition 3.5 (Pre-Krull-Schmidt Category). An additive category C is called a
pre-Krull-Schmidt category provided that Ende(X) is a semiperfect ring for each
X eC.
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Proposition 3.6. Let C be a pre-Krull-Schmidt category. For any X € C, there
are indecomposable objects X; (1 <i <n) such that
x~A" x,.
i=1
Proof. Given X € C, since End¢(X) is a semiperfect ring, there is a natural number
nx such that Ende(X) has a complete set of orthogonal primitive idempotents
e; (1 <4 < nx). If X is not indecomposable, then we have a decomposition
X = X10X, with X; # O (i = 1,2). By Lemma 3.2,2, Proposition 3.3, we have
nx, <nx (i =1,2). We get the statement by induction on nx. O

Proposition 3.7. Let C be a pre-Krull-Schmidt category. Then the following are
equivalent.

1. For any object X € C, X is indecomposable if and only if Endc(X) is a local
Ting.

2. For any object X € C, for any e* = e € End¢(X) there exist Y € C and
q:Y =X, p: X =Y such that qp = e and pg = 1y (i.e. any idempotent of
Endc(X) splits).

Proof. 1 = 2. For any object X € C, by Proposition 3.6, we have X =~ @ | X;,
where X; are indecomposable objects (1 <4 < n). Then the compositions of natural
morphisms X — X; — X form a complete set of orthogonal primitive idempotents
of End¢(X). By Lemma 3.2, 2, we get the statement 2.

2 = 1. Since End¢(X) is semiperfect, it is trivial. O

Definition 3.8 (Krull-Schmidt Category). We call a pre-Krull-Schmidt category
C a Krull-Schmidt category if C satisfies the equivalent conditions of Proposition
3.7.

Theorem 3.9 (Krull-Schmidt Theorem). Let C be a Krull-Schmidt category. For
any X € C, X 1is isomorphic to @:-L:lXi, where X; are indecomposable objects.
Moreover, this decomposition is unique up to isomorphism (this is called a K-S
decomposition,).

Proof. By Propositions 3.6, 3.7, X € C has a K-S decomposition @;_,X;. Lemma
3.2 and Proposition 3.3 imply uniqueness of this decomposition. O

Example 3.10. We denote by mod A the category of finitely presented right A-
modules. Let R be a commutative complete local ring, A a finite R-algebra. Then
mod A is a Krull-Schmidt category.

Definition 3.11 (Stable Category). Let C be an additive category, Z an additive
full subcategory of C. For X, Y € C, let Z(X,Y) be the subgroup of Hom¢(X,Y)
generated by morphisms which factor through some object of Z. We define the
category C; as follows.

1. ObC; = ObC.

2. Home_(X,Y) = Home(X,Y)/Z(X,Y).
This category is called the stable category of C by Z.

Remark 3.12. For X € C, If X is a direct summand of some object of Z, then
X=0inCy.

Theorem 3.13. Let C be an additive category, T an additive full subcategory of C.
If C is a Krull-Schmidt category, then so is C.
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Proof. By Proposition 2.3, C; is clearly an additive category. For an indecom-
posable object X € C;, we have a K-S-decomposition X = @:.L:lXi in C. Let
e; + X 25 X, 25 X be the canonical morphism in C (1 < i < n), and ¢; be the
image of e; in € C;. If the number of e; such that e; # 0 is greater than 1, then
by Lemma 3.2 this contradicts indecomposability of X. Thus we may assume that
e, #0and e, = 0 fori > 2, and then ¢;p; factors through V; € Z for ¢ > 2. Then X;
is a direct summand of V;. Therefore, by Lemma 3.2,3, End¢_(X) = End¢_(X;) is
a local ring. We complete the proof by Proposition 3.7. [l

Example 3.14. Let R be a commutative complete local ring, A a finite R-algebra,
and proj A the full subcategory of mod A consisting of finitely generated projective
right A-modules. Then the stable category modA of mod A by proj A is a Krull-
Schmidt category.
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4. TRIANGULATED CATEGORIES
Throughout this section, unless otherwise stated, functors are covariant functors.

Definition 4.1. A triangulated category C is an additive category together with
(1) an auto-equivalence T : C = C, called the translation, and (2) a collection 7 of
sextuples (X,Y, Z,u,v,w), called triangle (distinguished triangle) . These data are
subject to the following four axioms:

(TR1) (1) Every sextuple (X,Y,Z, u,v,w) which is isomorphic to a triangle is a
triangle.

(2) Every morphism u : X — Y is embedded in a triangle (X,Y, Z, u, v, w).
(3) The triangle (X, X,0,1x,0,0) is a triangle for all X € C.

(TR2) A triangle (X,Y, Z,u,v,w) is a triangle if and only if (Y, Z, T X, v, w, —Tu) is
a triangle.

(TR3) For any triangles (X,Y, Z,u,v,w), (X', Y’, Z',4/,v',w") and morphisms f :
X - X' g:Y — Y with gu = vf, there exists h : Z — Z’ such that
(f,g,h) is a homomorphism of triangles.

(TR4) (Octahedral axiom) For any two consecutive morphisms v : X — Yand v :
Y — Z, if we embed u, vu and v in triangles (X,Y, 2, u, 4,4, (X, Z,Y", vu, k,
k') and (Y, Z,X’,v,j,7"), respectively, then there exist morphisms f : 72/ —
Y’, g: Y’ — X’ such that the following diagram commute

X —“ Ly .,z " rx

H : ]

vy K rx

J g9 lTu

X — x L 7Y

7 (T’

Y 17
and the third column is a triangle.
Sometimes, we write X [i] for T%(X).

Definition 4.2 (0-functor). Let C, C’ be triangulated categories. An additive func-
tor F': C — C’ is called O-functor (sometimes ezact functor) provided that there is a
functorial isomorphism « : FTz = T¢/ F such that (FX,FY, FZ, F(u), F(v), ax F(w))
is a triangle in C" whenever (X,Y, Z,u,v,w)is a triangle in C. Moreover, if a 0-
functor F' is an equivalence, then we say that C is triangle equivalent to C’, and

denote by C 2 ¢’

For (F,a), (G, ) : C — C" O-functors, a functorial morphism ¢ : F' — G is called
a O-functorial morphism if (Te @) = BoTe.

We denote by 9(C,C’) the collection of all d-functors from C to C’, and denote
by 0 Mor(F, G) the collection of d-functorial morphisms from F' to G.

Definition 4.3. Given a triangulated category C with a translation 7T¢, we define
the opposite triangulated category C? the following

L. Teon (XP) =T, 1(X).
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2. XP - YP — ZP — Teop XP is a distinguished triangle if Tc_lX — 7 —
Y — X is a distinguished triangle in C.
Definition 4.4. A covariant additive functor H : C — C’ from a triangulated cate-

gory to an abelian category is called a covariant cohomological functor, if whenever
X,Y, Z,u, v, w) is a triangle in C, the long sequence

H(T(u)) H(T*(w))
e m

= H(TY(X)) HT (V) T, prepi(zy) HTCD, gopitxy) S

is exact. If H is a cohomological functor, then we often write H*(X) for H(T"(X)),
1 € Z. One defines a contravariant cohomological functor by reversing the arrows.

In this section, we deal with internal properties of a triangulated category C.

Proposition 4.5. The following hold.
1. If (XY, Z,u,v,w) is a triangle, then vu = 0, wv =0 and T (u)w = 0.
2. For any W € C, Hom¢(W, —) : C — b (resp., Home(—, W) : C — Ab) is a
covariant (resp., contravariant) cohomological functor.
3. For any homomorphism of triangles (f,g,h) : (X,Y, Z,u,v,w)
— (XY, Z/ v W), if two of f, g and h are isomorphisms, then the rest
s also an isomorphism.

Proof. 1. According to (TR2), it suffices to show vu = 0. By (TR2) and (TR3) we
have a commutative diagram

x X . x 0 TX

[ O H

X Yy "7 " TX
2. Let (X,Y,Z,u,v,w) be a triangle. Then, since by 1, vu = 0, we have
Home (W, v) o Home (W, u) = 0. Conversely, let g € Home (W, Y') such that
Home(W,v)(g) = vg = 0. Then by (TR3) there exists f € Home(W,Y') which
makes the following diagram commutes

W W o) ™W

fl lg l le
X —4—Y —>7Z "> TX
Thus ¢ = Home(W,u)(f) and the sequence Home(W,X) — Home(W)Y) —
Home (W, Z) is exact. It follows by (TR2) that Home(W, —) is a cohomological
functor.
3. According to (TR2), it is enough to deal with the case that f, g are isomor-
phisms. By 2 we have a commutative diagram with exact rows
Home(TY',—) — Home(T X', —) —Home(Z', —) — Home (Y', —) —Home (X', —)
| Home (Tg,—) | Home(T'f,-) | Home (h,—) | Home(g,-) | Home (f,-)
Hom¢(TY, —) — Home(TX, —) — Home(Z,—) — Home (Y, —) — Home (X, —).

Thus, since by 5 lemma Hom¢ (h, —) is an isomorphism, it follows by Yoneda lemma
that h is an isomorphism. O

Proposition 4.6. Let F : C — C' be a O-functor between triangulated categories.
If G:C" — C is a right (resp., left) adjoint of F', then G is also a O-functor.
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Proof. For X € C’, we have a functorial isomorphisms
Home(—, GTX) = Home: (F—, TX)
=~ Home/ (T F—, X)
=~ Home/ (FT7'—, X)
= Home (T —,GX)
=~ Home (—, TGX).

Then we have a functorial isomorphism 3 : GTg: = TeG. For a triangle (X, Y, Z, u,
v,w) of C', let (GX,GY,Z',Gu,v’',w'") be a triangle of C. Since there is a morphism
of triangles

FGX FGQY FZ FTGX -2~ TFGX
X Y z TX.

Then we have a commutative diagram

GX —>GY 7 TGX
N
GX —> GY — GZ —> GTX — > TGX.

Since Home (M, G—) = Home (FM, —), (GX,GY,GZ,Gu, Gv, Gw) induces a long
exact sequence. We apply Home (M, —) to the above diagram, then by 5 lemma,
we have an isomorphism from (GX,GY, Z', Gu,v',w') to (GX,GY,GZ,Gu, Gv,

Proposition 4.7. The following hold.
L If [T, Xi (resp., [1;e;Xs) exists in C for {Xi}icr, then there is an isomor-
phism
o HielTXi — THieIXi
(resp., 3 : HielTXi — THieIXi).

2. For a collection of triangles (X;, Yy, Zi, ui, vi,w;) (i € 1), if [Tic; Xe, [icrYe,
icYe (resp., [Lic 1 Xis [icrYis [ic i) eist in C, then

(HieIXi’ HieIYi’HieIZi’Hielui’Hielvi’ aHiezwi)
(resp., (HieIXi’HieIYi’HieIZi’Hielui’Hielvi’ﬁnielwi))
s a triangle.
Proof. 1. We have isomorphisms
HomC(THieIXi, ) HomC(HieIXi,T_l—)
=[], Home (X, T7'-)
= Hiel Home (TX;, —)
o~ Homc(HielTXi, -).
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2. Let ([I;c;Xi5 ;e Y, 25 e i, v, w) be a triangle. Then we have a com-
mutative diagram

Hierui Hiervi all;ervi
[Lie X = ie1Yi —= ie1Zi — TTie X
[/ Xi — ie1Yi — z' —— TTie X
Applying Home (M, —) to the above, by 5 lemma, we complete the proof. O

Proposition 4.8. The following hold.

1. A triangle (X,Y, Z,u,v,0) is isomorphic to (X, Z®X, Z,[{],[10],0).
2. For a morphism of triangles

there exists g’ : Z — 7' such that

v !
Yy [f] ZaY" [—g' '] VA (Tw)w TY

s a triangle.

Proof. 1. Since Home(Z, Z) N Home(Z,TX), by Proposition 4.5, there is s : Z —
Y such that vs = 1z. Then we have a commutative diagram

X * zex —~ 7 % 71X

Il I

X —“ L,y .,z % 7rx

Where on = [(1)], mw = [1 0]7 o = [s u]
—1_ 7
2. Since T-17/ =L ¥,

! !

u v . . .
X — Y’ — 7' is triangle, we have a commutative
diagram

_T—lwl u! ’

T—lz/ Y/ v VA

H -

iy My e oy Py
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s

By 1, Y 5 M2 7% TY is isomorphic to Y/ 2 ZaY' = Z % TY’. Then we
have a commutative diagram

iy ST o oy Yo
| “ : |
Tz Ty @ ey B g
v . l‘“"
7 —— 7 — - TX
w 0

rx I, 1y
where p = [(1)], i [1 0]7 a = [}}/], B = [—g” ”/]7 and v'f = ¢"v, flu = o,
w=w'g". Since (f' — f)u =0, there is h : Z — Y’ such that f' = f + hv. Hence
we have a commutative diagram

y ZaY! i Z (Tuu’ TY
H ‘| H H
Yy —° . zey 2z Iy
where o/ = [¥], # =[-d v ], ¢ =[} 9] B

Proposition 4.9 (9 Lemma). Any commutative diagram in C

X/“_/>§ﬂ

x'l ly/
X 2 v

can be embedded in a diagram

u v w
X/I Y/I Z/I TX/I
z" y// 2 = —Tx”

X Ty T g ~TY e

which s commutative without the right and bottom corner, - anti-commutative,
where all rows and columns are triangles.
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Proof. According to (TR4), we have three commutative diagrams

’ ’

Xy g W

I
Xy e a Py
Y ) Tu
v L)Ty/
v (Tv)y”
Ty Ty

’ "

X2 sx— T xr *.orx/

I
Xy o« a P oy
v n Tz’
Z 7—2>TX
w (Tz)w
TX T X"
XMt sp g Ty
I

(Tv")y" P Te
TZ ——T7' -~ T A
—T~ T
Tn
TA—"T7

In particular, we have v = de, v =na, y = da, 2’ =1y, zp =" and (Tz")w”
(TB)(Te)w” = —(TB)(Ty)z" = —(Tw')z’. Then it is easy to get the diagram. O

5. FROBENIUS CATEGORIES

Definition 5.1 (Exact Category). Let C be an additive category which is embed-
ded as a full subcategory of an abelian category A, and suppose that C is closed
under extensions in A. Let S be a cdllection of exact sequences in A

O-X3LY L Z-o0.
u is called an admissible monomorphism, and v is called an admissible epimorphism.
A pair (C,S) is called an ezact category in the sense of Quillen provided that

(EX1) Any split sequence of which all terms are in C is in S.
(EX2) The composition of admissible monomorphisms (resp., epimorphisms) is also
an admissible monomorphism (resp., epimorphism).
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(EX3) Given the fdlowing commutative diagram in A

0] X Y Z 0]
0] X’ Y’ Z 0]
where all rows are exact, if the top row is in S and X’ € C, then the bottom
row is in S.
(EX4) Given the fdlowing commutative diagram in A
0] X Y’ A 0]
0] X Y Z 0]
where all rows are exact, if the bottom row is in S and Z’ € C, then the top
row is in S.

An object X in C is called S-projective (resp., S-injective) if for any admissible
epimorphisms (resp., monomorphisms) v : ¥ — Z, Home (X, v) (resp., Home (v, X))
is surjective.

Definition 5.2 (Frobenius Category). An exact category (C,S) is called a Frobe-
nius category if (C,S) has enough S-projectives and enough S-injectives and if
S-projectives coincide with S-injectives.

Let Q be the full subcategory of C consisting of S-projective objects. A stable
category C is the category Cy.

Proposition 5.3. In a Frobenius category (C,S), we consider the following com-
mutative diagram

o) X I X, 0)
/| | s
o) X' r X 0)

where I, I' are S-injective, with all rows in S. Then the image i/ is uniquely
determined by f in C.

Remark 5.4. For all X € C we choose the elements O — X 5 [(X) 5% TX —
O in S, with I(X) being S-injective. According to Proposition 5.3, an object T'X is
uniquely determined up to isomorphism in C independently of choice of the above
sequence, but f " is depend on their choice. Then we can understand the induced
functor T : C — C only if we know O — X £X, I1(X) X, TX — Oin S for all
X eC.

Proposition 5.5. T is an auto-equivalence of C.

Definition 5.6 (Triangle). In a Frobenius category (C,S), let v : X — Y be
an morphism in C. By taking M(u) = PushOut(u, px), we have the following
commutative diagram in C

O X 2x) 21X O
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with all rows in §. Then in C the sequence
X5Y S5 Mu) =TX

is called a standard triangle. Let 7 be a collection of sextuples which are isomorphic
to standard triangles in C.

Lemma 5.7. In a Frobenius category (C,S), let w: M(u) — T'X be the morphism
in Definition 5.6. Consider the following commutative diagram in C

’ ’

O X - v —— M@u —— O
|-l [
O X ‘Lt 1x)y —— 17X —— 0

with all rows in S, then the sextuple X = Y’ = M(u) 2, TX is isomorphic to
the above triangle X =Y = M(u) = TX in C.

Proof. By Proposition 2.21, we have the following commutative diagram

0 X Lo ixyey —2— Mu) —— 0
| s [
O x £ I(xy —/— TX —— 0
where = [#],y=[-2v],d =[10], withall rows in S. Since the right and bottom

rectangle in the previous diagram is pull back, there exists n: Y’ — I(X) @Y such
that we have the following commutative diagram in C

’ ’
u v

X = Y = M@u — TX

H L2 H |

X 2 ey —I Mu) —2- 7X

H Js H H

X 2 Y -2 M(u) — % . TX
where € = [0 1], all vertical arrows are isomorphisms in C. O
Proposition 5.8. In a Frobenius category (C,S), the image of any element O —

X5Y L Z—0 of S can be embeddedinatm’angleXiYiZﬁTX in C.

Proof. Since I(X) is S-injective and O — X —%Y % Z — O € S, we have a
commutative diagram

O X — Y “ Z O
H | [
O X Lt rx) —~L- 71X 0.
By Lemma 5.7, we get the statement. |

Theorem 5.9. Let (C,S) be a Frobenius category. Then (C,T) is a triangulated
category.
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Proof. we show that (C,S) satisfies the axioms of a triangulated category.

(TR1) It is trivial.

(TR2) Let (X,Y, Z, u,v,w) be a standard triangle. Then we have a commutative
diagram

0O —— X 2 IX) X, TX O
O —— Y —— Z Y~ TX 0
S
0O —— 1Y) —2— 1V)orx —2— TX 0
Yy é
TY TY
where a = [5], 6= [}],v=1[01], 8 = [y «'], Ty s+u/w = 0, and with all rows in
S. Since sxpux = [10]arux =[10]Buyu = puyu, we have a commutative diagram
O X 2 rx) 21X O
O y 2 1y) 2 1Y 0.
Then we have v’ = —Tu, and we have a commutative diagram in C
Yy —* 7 " X Y71V

I I H

Y —Y s 7~ [(Y)eTX —— TY

where ¢ = [{] is an isomorphism in C. Hence a sextuple (Y, Z,TX,v,w, —Tu) is a
triangle . The reverse implication is similar by Lemma 5.7.
(TR3) Let (X;,Y:, Z;,u;, v;, w;), be standard triangles (i = 1,2), and

nX; X,

O X; I(X5) L TX; O
4
o v, —— Z; —U TX, 0

commutative diagrams with all rows in §. Let f: X7 — X5, g : Y, — Y5 be
morphisms satisfying u,f = gu; in C. Since I(X;) is S-injective, there exists
t:I(X,) — Ys such that gu; — usf = tux,. Since I(X3) is S-injective, we have a
commutative diagram

MXq

X1 _— I(Xl)

/| I

KXo

X2 _— I(XQ)
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Then we have equations

LT x, = xQMXzf
= vouaf

Vaguy = VaUs f + vatiix,
= (w2r + vat)px,

Since

X, 2 1(x)

Y; L TN A
is push out, there exists i : M(u1) — M(uz) such that vog = hvy and zor + vat =
hxy. Then there is f/ : TX; — T X5 such that f'w; = wsh. Since
f/7TX1 = flwiz1 = wohay = wa (o1 + vot) = wokor = TX,T

we have f' = Tf, and hence a morphism (f,g,h) from (X1,Y1,Z1,uy,v;,w;) to
(XQ)YQ)ZQ)EQ)QQ)QQ)'

(TR4) Let (X,Y, 2, u,i,i'), (X,Z,Y",vu, k, k') and (Y, Z,X’,v,j,j) be trian-
gles in C. We have a commutative diagram in C

HX

O—>X—>I( ) 27X —>0
ju px H

0 y — 2 o)
oo l H

0 7~ 0

where all rows are in S. Since 7 is an admissible monomorphism, p'y = pz/i is
also an admissible monomorphism and there is an admissible epimorphism 7’y such
that 7z, = (T"i)7'y. Then we have a commutative diagram in C

X 25 1(x) s 1x

e b X

Yy ———= 7/ (7" TZ'
ST
) L RN TZ

Therefore, we have a triangle in C
7 Loy o L8
Since jig1 fr = (T'u)rx = (T'u)k’ fr and jig1k =0 = (T"u)k’k in C, and
X Y —— Z
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is push out, we have jig1 = (T"u)k’. Since I(Y) and I(Z’) are S-injective, there
exist a: TY — T'Y and 5 : X’ — X" such that

) TY
S s

Z X’ TY

Y—/|>1(Z")—|>TY
v s 7
Y

Z X/I T/

is commutative in C, where a is an isomorphism in C. Then by Proposition 2.22, 3 is
an isomorphism in C, and T% = (T"i)a, Tu = o~ *T"u. Let g= ﬁ_lg_l, Jj= ﬁ_lg_lk,
J' = a7 'ji B, then we have the octahedral diagram of Definition 4.1. O

Example 5.10. Let A be a self-injective algebra over a field k, and O — Q —
Ao A £ A — O an exact sequence, where g is the multiplication map. Then
mod A is a Frobenius category, its stable category modA is a triangulated category
with a translation functor Hom4 (2, —).

6. HomoTOPY CATEGORIES

Throughout this section, A is an abelian category and B is an additive subcate-
gory of A which is closed under isomorphisms.

Definition 6.1 (Complex). Let B be an additive category. A complezx (cochain
compler) is a collection X* = (X", d% : X" — X%¥™),ez of objects and morphisms
of B such that d¥™d% = 0. A complex X* = (X", d% : X" — X%t1),cz is called
bounded below (resp., bounded above, bounded) if X™ = O for sufficiently small
(resp., large, large and small) n.

A complex X* = (X", d%) is called a stalk complex if there exists an integer ng
such that X? = O if i # ng. We identify objects of B with a stalk complexes of
degree 0.

A morphism f of compleres X* to Y is a collection of morphisms f™ : X" — Y™
which commute with the maps of complexes

fretdy = dg g

We denote by C(B) (resp., CT(B), C™(B), C°(B)) the category of complexes
(resp., bounded below complexes, bounded above complexes, bounded complexes)
of B. An auto-equivalence T : C(B) — C(B) is called trandation if (TX*)" = X" +!
and (Tdx)" = —d'x™ for any complex X* = (X", d%).

Proposition 6.2. The following hold.

1. C*(B) is an additive category, where x = nothing, +, —,b. Moreover, if B has
products (resp., coproducts), then C(B) has also products (resp., coproducts).

2. C*(A) is an abelian category, where * = nothing, +, —,b. Moreover, if A
satisfies the condition Ab3* (resp., Ab3), then C(A) also satisfies the condition
Ab3* (resp., Ab3).



DERIVED CATEGORIES AND REPRESENTATIONS OF ALGEBRAS 25

Definition 6.3. For v € Homcg)(X",Y"), the mapping cone of u is a complex
M (u) with

Mn(u) — Xn+1@Yn)
d?/[-(u) _ [—d*;(—%—l 0 } C XnHlgyn — XnT2gyntl

wn L an

Moreover, for 1x € HOmC(B)(X',X'), let I(X) = M(lx)

Definition 6.4. Let Sc+(5y be the collection of exact sequences O — X* Ly 2
Z* — O of complexes of C*(B) such that

o—xrILyrn g 0o

are split exact for all n € Z, where * = nothing, +, —,b. In this case, we call f
(resp., g) a term-split monomorphism (resp., a term-split epimorphism).

Proposition 6.5. For u € Homc) (X", Y"), we have an exact sequence in C(A)

Ty

O—-Y M) 2 TX -0
where p, =[], 7y =[10]. Moreover, the above sequence belongs to Sc(p).
Lemma 6.6. For X € C(B), we have
(X2 (X"ex [1 0, 8] XmeX" —» X 2exnth).

xn+1 0
Proof.
D159
X"+1@X" Ox X"+2@X"+l
- [
Xrtlgxn 5" XnH2q xntl
where o™ = [1X8’+1 1‘1;2} and 0" = [1XS+1 8]- O

Lemma 6.7. The category (C(B),Sc(g)) is an evact category.

Proposition 6.8. The category (C*(B), Sc-(g)) is a Frobenius category, where * =
nothing, 4+, —,b.

Proof. Let X* € C(B), then by Lemma 6.6 we have
I(X") = @nezl'(X )[=n).

where X" is a stalk complex of degree 0 (Note that the above biproduct exists by Ex-
ercise 6.18). It is easy to see that I*(X™)[—n] is S¢(s)-projective and Sc(g)-injective,
and then I'(X") is Sc(p)-projective and Scp)-injective. For any Sc(g)-injective
complex Y, by Proposition 6.5, Y* is a direct summand of I*(Y*), and hence Y*
is Sc(py-projective. Similarly, any Sc(g)-projective complex is Sc(y-injective. Ac-
cording to Proposition 6.5, it is easy to see that C(B) has enough Sc(g)-injectives
and enough Sc(g)-projectives.

Definition 6.9 (Homotopy Category). A homotopy category K*(B) of B is the sta-
ble category of (C*(B),Sc~(5y) by the full subcategory Zc-(g) of Sc-(g)-injective
objects, where * = nothing, 4, —, b.



26 JUN-ICHI MIYACHI

Remark 6.10. For v € Homc¢g)(X*,Y"), we have a commutative diagram

0 X 2 rx) X TX O
d |+ H
O vy 2 M(u) = TX: O
where z = [§ 9], with all rows in Sc(g). By the proof of Proposition 6.8, the

definition of M*(u) coincides with the one of Definition 5.6.
Proposition 6.11. A category K*(B) is a triangulated category, where x = noth-
ing; +, =, b.
Proposition 6.12. If an exact sequence O — X+ % Y- % 7+ — O in C*(B)
belongs to Sc+(p), then it can be embedded in a triangle X* LY 525 TX in
K*(B), where * = nothing, +, —,b.
Proof. By Proposition 5.8. |
Definition 6.13 (Homotopy Relation). Two morphisms f,g € Homcz)(X*,Y")
is said to be homotopic (denote by f o g) if there is a collection of morphisms
h = (h"), k™ : X™ — Y"1 such that
fn _ gn _ dg—lhn =+ hn-‘rld’r;(

for all n € Z. For X*, Y € C*(B), Htpc ) (X*,Y") is the subgroup of Homcs) (X",
Y™") consisting of morphisms which are homotopic to 0.
Proposition 6.14. For a morphism f € Homcg) (X", Y") (* = nothing, +,—,b),
the following are equivalent.

L. f € Hipes) (X, Y).

2. f factors through X+ 25 I(X).

3. f factors through I*(T~'Y*) 5 ki 8 )
4. f S IC(B)(X,Y)
In particular, Htpe sy (X", Y") = Zc ) (X, V7).

Proof. 1 < 2. Let h = (h™) be a homotopy morphism f o 0, and let ¢ = (¢") :

X =Y, ¢" =[n** s ]. Then for all n € Z we have

_d» 0
n n n+l rn X
O B = 0 )| |

[
[ hn+1dn +fn fndn 1]
= [dyh" &y Y
d;; ¢n 1)
¢k = [+t ] [ ]
= fn.
Conversely, let ¢ = (¢™) : X* — Y* be a morphism such that f = ¢ux.. By the

same calculation in the above, there is a homotopy morphism h = (h™), A" : X" —
Y +! such that

fn — dg—lhn + hn+1dr)z(_
for all n € Z. Thus f € Htpeg) (X*,Y").
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2 < 4. Since I'(X*) is I¢(p)-injective, 2 = 4 is trivial. Conversely, since px. :
X+ — I'(X*) is an admissible monomorphism, it is also trivial.
3 < 4. The same as 2 < 4. O

Corollary 6.15. The canonical functor C(B) — K(B) preserves products and co-
products. In particular, we have

1. If B has products (resp., coproducts), then so has K(B).
2. If A satisfies the condition Ab3* (resp., Ab3), then K(A) has products (resp.,

coproducts) .
Proof. By Proposition 6.14, we have exact sequences for X*,Y* € C(B)

Homc ) (I*(X*),Y") — Home () (X", Y*) — Homy ) (X", Y*) — 0,
Homc gy (X", I'(T~'Y")) — Homc sy (X", Y") — Homg s)(X",Y") — 0.

Then it is easy. O

Corollary 6.16. Let B’ be another additive category, and F : C(B) — C(B') an
additive functor. If F' satisfies the conditions

(a) there exists an functorial isomorphism o : FT¢ gy — Tesn I,

(b) for any morphism u : X+ — Y* in C(B), we have a commutative diagram

Fu ax Fmy,

FX L pys T pM(u) 22X T FXC

H | '] H

FX- s Fy. P M(Fu) " Ty FX,
then F induces a O-functor F' : K(B) — K(B').

Remark 6.17. By the proof of Proposition 6.14, X* belongs to Z¢ () if and only if
X+ is a direct summand of I*(X*). Hence it is easy to see that any object of Z¢(z)
is isomorphic to I*(Z*) for some Z* € C(B).

Exercise 6.18 (Biproduct). Let n > 0, and let X; : ... — X"™' — X7 be com-
plexes of C™(B) indexed by i € N. Prove the following.

L JLenT'X; 2 [LienT'X; in C(B). Thus @, 1" X; exists in C(B).

2. [LenT'X; 2= [1ienT'X; in K(B). Thus @, yT"X; exists in K(B).

Let n >0, and let Y : Y2 — Y! — ... — Y;* be complexes of C*(B) indexed by
1 € Z. Prove the following.

L JLes Ty =11, T7Y; in C(B). Thus @

2. [Tier 7Yy = [1;e,T7Y; in K(B). Thus P

T'Y; exists in C(B).
TYY; exists in K(B).

e
=
Proposition 6.19. Let R be a commutative complete local ring, A a finite R-

algebra, and B is a Krull-Schmidt subcategory of mod A. Then Kb(B) s also a
Krull-Schmidt category.

Proof. Let X* € C°(B). Since we may assume that X* = X0 — X! — .. — X",
Endeo )(X*) is a subring of [T, Enda(X"), and hence Endcy ) (X*) is semiper-
fect. It is clear that any idempotent of Endey ) (X*) splits. Therefore C*(B) is a
Krull-Schmidt category. According to Theorem 3.13, we complete the proof. O
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Definition 6.20. Let A be an abelian category. For a complex X' = (X", dY% :
X" — X, ez of A, we define an objects of A for all n € Z

Z"(X') Ker d’

B"(X*) =Imd !
cM(X )=Cokd" !
H"(X*) = Z"(X")/ B"(X")

this is called nth cohomology,

and define complexes

2:(X") = (2"(X"), 0)nez
B (X") = (B"(X"),0)nez
C(X7) = (C™(X"), 0)nez
H'(X*) = (H"(X"), 0)nez

A complex X+ = (X", d%) is called an acyclic complex if H*(X*) =0 for all n € Z.

Remark 6.21. Since we have a commutative diagram
O ——BX) — X" —— C"(X) —— O
o —— 7"X") —— X» —— B""(X") —— O,
where all rows are exact, by snake lemma, we have a short exact sequence
O —H'(X") - C"(X") - B""(X") - 0.

Exercise 6.22. Let A be an abelian category, and P a projective object of A. For
X+ € C(A), show that

Homy 4 (P, X*[i]) = Hom4 (P, H'(X"))
for all 7.

Proposition 6.23. Let A be an abelian category, and letO — X - Y — 7 — O
be exact in C(A). Then we have the induced long exact sequence

L - HY(X) - HY(Y") - HY(Z) - H"TH(X) — ...
Proof. According to snake lemma, we have a commutative diagram
cx) — C"y) —— C(Z2r) —— O
| | |

0O —— 2"Y(X") —— Z2"(Y) —— Z2"N(Z)
where all rows are exact. Then we get the exact sequence

H(X) — H' (V) = H"(Z) — B (X) — B4 (V) — B (2),
by snake lemma. O

Remark 6.24. Let v be a morphism of Homc(4)(X",Y"). According to Proposi-
tion 6.5, we have an exact sequence in C(A)

O—Y 2% M(u) ™ TX — 0.
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Then we have the induced long exact sequence

X)L H (YY) - B (u) — By 2

Moreover, it is not hard to see that 6" = H" (u) for all n € Z (cf. Proposition 10.4).
Lemma 6.25. Forn € Z, The functor H" : C(A) — A factors through K(A).
Proof. According to Remark 6.17, all objects of Z¢(p) are acyclic. Then by Propo-

sition 6.14, it is trivial. O

Proposition 6.26. If X = Y+ 5 Z+ =5 T X" is a triangle in K(A), then we have
the induced long exact sequence

s H(X) (v Y, gz H™ (X)) — ...
Proof. According to Remark 6.10, for a representative v we have a commutative
diagram

H" (w)
—_—

O X I'(X7) TX O
d | H
O V.- —— M(u) —2— TX O

where all rows belong to Sc(4), with v = p,,, w = m,. By Proposition 6.23, we have
the induced long exact sequence

.= HY(X) - H'(Y") — H*(M'(u)) — H"" (X)) — ...
By Remark 6.24, Proposition 6.25, we get the statement. [l

7. QUOTIENT CATEGORIES
Definition 7.1 (Multiplicative System). A multiplicative system in a category C
is a collection S of morphisms in C which satisfies the following axioms:

(FR1) (1) 1x €S for every X € C.
(2) For s,t €8S, if st is defined, then st € S.

(FR2) (1) Every diagram in C

X —2 Y

1|
X/
with s € S, can be completed to a commutative square

X 2 v

7| s
x by
with s,t € S.
(2) Every diagram in C
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with ¢t € S, can be completed to a commutative square

X . v

7| g
X/ .t oy
with s,t € S.
(FR3) For f,g € Home(X,Y) the following are equivalent.
(1) There exists s € S such that sf = sg.
(2) There exists t € S such that ft = gt.

Throughout this section, S is a multiplicative system of a category C.
Definition 7.2 (Saturated Multiplicative System). A multiplicative system S in a
category C is called saturated if it satisfies the following axiom:

(FRO) For a morphism s in C, if there exist f, g such that sf,gs € S, then s € S.

Definition 7.3. For a morphism f: X — Y, we set source(f) = X and sink(f) =
Y

For a multiplicative system S, each X € C, S~ is a category defined by

1. Ob(S¥) = {s € S|source(s) = X},

2. Homgx (s, s') = {f € Home (sink(s),sink(s))|s' = fs} for s, s’ € Ob(S¥),
and Sy is a category defined by

1. Ob(Sx) = {t € S|dnk(t) = X},

2. Homs, (t,t') = {f € Home (source(t),source(t'))|t = t' f} for t,t’ € Ob(Sx).
Lemma 7.4. For any X € C, S* satisfies the following azioms:

(L1) For any fi € Homgx (s,s1'), fo € Homgx (s,ss’), there exist ' € S~ and
g1 € Homgx (s1,5"), go € Homgx (', ") such that g1 f1 = g2 fo.

(L2) For any fi,f, € Homgx(s,s'), there exist s’ € S~ and g € Homgx (s',s")
such that gfi = gfs.

(L3) S is connected.

Definition 7.5. For XY € C, we define a covariant functor
¥ osink : ¥ — Set
where 7% o sink(s) = Home (X, sink(s)) for s € S, and a contravariant functor
hy osource : Sy — Get
where hy o source(t) = Home(source(t),Y) for ¢ € Sx.
Lemma 7.6. Let X,Y € C. Define a relation , on the collection
{(f,s)|s €SY, f € Home(X,sink(s))}

as follows: (f1,81) ~ (fa,s2) if and only if there exist hy € Homgy (s1,5'),he €
Homgy (s2, 8) such that (hyfi1,s) = (haf2,s'). Then ~ is an equivalence relation
and we have

colim hX osink = {(f,s)|s € S¥, f € Home(X, sink(s))}/ ~ .

(Write the equivalence class [(f,s)] for (f, s), where f € Homc(X,sink(s)), s € S¥.)
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Remark 7.7 (Set-Theoretic Remark). In the above, we dealt with S¥ as a small
category (i.e. Ob(SY) is a set). In general, we don’t know the existence of the
above colimit. But the above colimit exists if there is a small subcategory S’ of
SY satisfying the following (this category is called a cofinal subcategory):

For any Y € C, SY satisfies the following axiom:
(Co) For any s € S¥, there exists a morphism f : s — s’ with s € S’

Then colim hX odnk exists, and we have
o

colim h¥ osink = colim h¥ osink.
SY 57Y

Lemma 7.8. For any X,Y,Z € C we have a well-defined mapping

colim h¥ osgink xcolim hY osink — colim h¥ osink
SY SZ SZ

which is defined as follows: with each pair ([(f,s)],[(g,t)]), since by (FR2) there
exist s € S with source(s’) = sink(t), ¢’ € Home(sink(s),sink(s’)) such that ¢’'s =
s'g, we associate the equivalence class [(¢'f,s't)].

Sketch.

Z/I
O

Definition 7.9 (Quotient Category). We define a category S™* C, called the quo-
tient category of C, as follows:

1. Ob(S™*C) = Ob(C).
2. For X, Y € Ob(C), the morphism set is given by

Homg-1,(X,Y) = colim h*X o sink.
S

3. For X,Y,Z € Ob(S™'(C), the law of composition is given by
Homg-1.(X,Y) x Homg-1 (Y, Z) — Homg-1 (X, Z),
(£, ) [(g, O]) = [(g'f, 8D,
where [(¢',s")] € Homg-1 o (sink(s), sink(¢)) with g's = §g.

4. The identity of X € Ob(S™*C) is given by the equivalence class [(1x,1x)].
Definition 7.10 (Quotient Functor). We have a functor @ : C — S™* C, called the
quotient functor, such that

QX)=X for X €C, Q(f)=][(f,1y)] for f € Home(X,Y).
Proposition 7.11 (Basic Properties). The following hold.
1. Q :C — S™'C sends null objects to null objects.
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2. For f,g € Hom¢(X,Y) the following are equivalent.
(1) Q(f) = Q(9)-
(2) There exists s € S* such that sf = sg.
(8) There exists t € Sx such that ft = gt.
3. The following hold.
(1) Q(s) is an isomorphism for all s € S.
(2) For any X,Y € S™'C we have

Homg-1 (X, Y) = {Q(s)7'Q(f)|s € S*, f € Home (X, sink(s))}
={Q(9)Q(t)"!|t € Sx, g € Home (source(t),Y)}.

4. For f € Home(X,Y) the following are equivalent.
(1) Q(f) is an isomorphism.
(2) There exist morphisms g, h in C with gf, fh € S.
5. Assume S is saturated. Then for any f € Home(X,Y') the following hold.
(1) Q(f) is an isomorphism if and only if f € S.
(2) If there exists s € S¥ with sf € S, then f € S.
(3) If there exists t € Sx with ft €S, then f €S.
6. For any X,Y € C we have a bijection

¢ =Cxy :colim hX osink — colim hy o source
’ sY Sx
which associates with each [(f, s)] the equivalence class of (t, g) with ft = sg,
and its inverse

N=nxy: coslim hy osource — coIi‘[n hX osink
X S

which associates with each [(t, g)] the equivalence class of (f,s) with ft = sg.

Proposition 7.12 (Uniqueness of Quotient). Let C’' be another category and F :
C — C' a functor such that F(s) is an isomorphism for all s € S. Then there exists
a unique functor F : S™1C — C' such that F = FQ.

C

Q

Sle—— =
F

F

Sketch. Since every object of S™'C is of the form QX for X € C, we can define
F:S7'C — (' as fdlows. Let F(QX) = F(X) for QX € S™' C and F([(f,5)]) =
(Fs)~'Ff for [(f,s)] € Homg-1.(QX,QY). Then we have F = FQ and the
required property. O

Proposition 7.13. Let C' be another category and F,G : S'C — C' functors.
Then we have a bijective correspondence

MOI‘(F, G) = MOI‘(FQ,GQ), (C = <Q)
Proof. By the proof of the above lemma, it is easy. O
Corollary 7.14. LetS = {f|Q(f) is an isomorphism in S™*CY. ThenS is a sat-
L. . =—1 . . 1
urated multiplicative system, and S ~ C is equivalent to S™" C.

Remark 7.15. Considering S™* C, by Corollary 7.14, we may assume S is a satu-
rated multiplicative system.
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Proposition 7.16. Let D be a full subcategory of C. Assume SND is a multiplica-
tive system in D and one of the following conditions is satisfied:

(a) For any s € SY with Y € D, there exists f € Home (sink(s),Y’) with Y’ € D
such that fs €S.

(b) For any t € Sx with X € D, there exists g € Home (X', source(t)) with
X' € D such that tg € S.

Then the canonical functor (SND)~'D — S~ C is fully faithful, so that (SND)~'D
can be considered as a full subcategory of S™'C.

Proof. By the same reason of Remark 7.7. O

Proposition 7.17. If C is an additive category, then S™'C is an additive category,
and Q : C — ST C is additive functor.

Proof. Tt is easy to see that S™'C satisfies the condition of Definition 2.1. For
X = [, X, by Proposition 2.3 we have FX = [[I_,FX; in S™'C. Therefore,
S™'C is an additive category and Q is an additive category by Definition 2.5,
Proposition 2.10. O

8. QUOTIENT CATEGORIES OF TRIANGULATED CATEGORIES

Definition 8.1 (Compatible with Triangle). A multiplicative system S in a trian-
gulated category C is said to be compatible with the triangulation if it satisfies the
following axioms:
(FR4) For a morphism u in C, u € S if and only if Tu € S.
(FR5) For triangles (X,Y, Z,u,v,w), (X', Y’', Z’,v/,v',w") and morphisms f: X —
X', g:Y =Y in S with gu = v f, there exists h: Z — Z’ in S such that
(f,g,h) is a homomorphism of triangles.

Throughout this section, C is a triangulated category, we assume that S is a
saturated multiplicative system of C which is compatible with the triangulation,
and Q : C' — S™1C is a quotient functor.

Lemma 8.2. There exists a unique auto-functor Ts—1. :S™*C — S~ C such that
QTe = Ts-1.0Q.

We simply write T' for Tg-1 4.

Lemma 8.3. Let (XY, Z,u,v,w), (X", Y, Z' ', v',w') be triangles in C, and let
a € Homg-1.(QX,QX’), 8 € Homg-1.(QY,QY") such that (Qu')a = SQ(u).
Then there exists v € Homg-1.(QZ,QZ") such that

Qu Qu Quw
—_ —_ —_

QX QY QZ TQX

O(l lﬁ l’)’ lToz

¢ _Qv QY’ _Qv Q7' _Quw' | TQX'

18 commutative.

Proof. There are f : X — X[, s: X' — X[, g:Y =Y t:Y — Y/ such
that a = (Qs)71Qf, B = (Qt)"'Qg and s,t € S. Then there are v} : X — Y3,
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s1 0 Y — Yy such that ufs = squ/, s1 € S. Since (Qu')a = BQ(u), there are
s9 1Yy = Y], t1:Y] — Y] such that soujf = tigu, s2s; = t1t and sas1 € S.

X X’ X —=Y \ &
NN TN
s t
X1 Y’ Y
N :
Yy Yy

:

Y3

Therefore there are h : Z — Z}, s3 : Z' — Z; such that we have a commutative
diagram

X vy Y, 7 Y, TX

N R T

So ull , 1)/ , w// ,
X, Y/ Z TX,

ST Tm Tss TTS

’ ’ ’

X Ly Lz Y, TX

with s3 € S. Since (Qs251) 1 (Qt1)Qg = (Qt1t)~H(Qt1)Qg = (Qt)"1Qg = 3, let
v = (Qs3)~1h, then v satisfies the statement. O

Definition 8.4 (Triangulation). A sextuple (QX',QY’,QZ', A\, u,v) in S7c is
called a triangle if there exists a triangle (X,Y, Z,u,v,w) in C such that
(QX',QY",QZ', A\, i, v) is isomorphic to (QX,QY, QZ, Qu, Qu, Qu).

Theorem 8.5. S™'C is a triangulated category and Q : C — S™'C is a O-functor-

Proof. Since for any morphism a : QX — QY in S~!C there are f:X -V,
s:Y =Y, t: X3 =Y, g: X; — Y such that we have commutative diagram

X —— X <% x,
S
v, <2y Y
with s,t € S, it is easy. O

Proposition 8.6. Let A be an abelian category and H : C — A a cohomological
functor such that H(S)_are isomorphisms for all s € S_ Then there exists a unique
cohomological functor H : S™'C — A such that H = HQ.

Proposition 8.7. Let D be another triangulated category and F = (F,0) : C — D
a O-functor such that F's are isomorphisms for all s € S. Then there exists a unique
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O-functor F = (F,0) : S™'C — D such that F = FQ and § = 0Q.
C
le
STte——>C
F
Proposition 8.8. Let D be another triangulated category and F = (F,0),G =
(G,n): S™'C — D d-functors. Then we have a bijective correspondence
OMor(F,G) = dMor(FQ,GQ), (¢ +— ¢q)-

Proof. By Proposition 7.13, it remains to check the following commutativity. For
X eC, ¢y € OMor(FQ,GQ), we have

FTs10QX ——— FQTeX —29 TpFQX

chl lTDw

GTS—l CQX pr— GQTCX —_— TDGQX
nQ

9. EPAISSE SUBCATEGORIES

Definition 9.1 (Epaisse Subcategory). An épaisse subcategory U of a triangulated
category C is a triangulated full subcategory of C such that if u € Hom¢(X,Y)
factors through (an object of) U and is embedded in a triangle (X,Y, Z,u,v,w) in
C with Z € U, then X,Y € U.

Proposition 9.2. For a triangulated full subcategory U of C, the following are
equivalent.

1. U is an épaisse subcategory of C.
2. U is closed under direct summands.

Proof. 1 = 2. Let XY € C such that X®Y € U. By Proposition 4.8, we have
a triangle (T~Y, X, X®Y,0,u, 7). Since 0 : T~'Y — X factors through O € U,
T7'Y,X €U, and hence Y, X € U4.

2 = 1. Let (X,Y, Z,u,v,w) be a triangle such that Z € U and u factors through
Y’ € U, then we have a morphism of triangles

X ==Y VA TX

H ] H

X ==Y Z TX.
By Proposition 4.8, we have a triangle (Y', Z'®Y, Z, , x,*). We have Z'®Y € U,
and then Y € U. Therefore Y, Z € U implies X € U. O

Definition 9.3. For an épaisse subcategory U of a triangulated category C, we
denote by ®(U) the collection of morphisms w in . such that M(u) € U.

Lemma 9.4. Let U be an épaisse subcategory of a triangulated category C. For a
morphism f in C, the following are equivalent.

1. f factors through some object of U.
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2. There exists s € ®(U) such that sf = 0.
3. There exists t € ®(U) such that ft = 0.

Proof. 1 & 2. If f factors through U € U, then we have a commutative diagram
X p— X

gl [

v ——~—-vy =7 217U
where the bottom row is a triangle, and with s € ®(U). We have sf = 0. Con-
versely, if sf = 0 with s € ®(U), then there exists u such that we also have the

above commutative diagram. Therefore f = zu.
1 3. Similarly. O

Proposition 9.5. Let U be an épaisse subcategory of a triangulated category C.
Then ®(U) is a saturated multiplicative system which is compatible with the trian-
gulation.

Proof. We use the following diagram to check the axioms of a multiplicati ve system.
X sy 4 7z L .7x

vy K rx

J Y lTu

X — x TY

7 T

Ty I, Ty
Diagram A

(FRO) Let v: X = Y,u:Y — Z,r : Z — U be morphisms such that ru,uv €
®(U). Then we have a commutative diagram

y —“ L,z I . x 1 7y

o
y U 2> v 21 7TY
with V € U. Since z = (T4%)j’ = (Ti)ql, x factors through V € U. Since uwv € ®(U),
we have Diagram A with Y’ € Y. Therefore, X', Z’ € U, and hence u € ®(U).
(FR1) (1) Since O € U, it is trivial. (2) If u,v € ®(U), then we have Diagram A
with Z’, X’ € Y. Then Y’ € U, and hence vu € ®(U).
(FR2) (1) Given v €€ ®(U), i, we have Diagram A with X’ € U. Then z € ®(U).
(2) Given z € ®(U), k, we have Diagram A with X’ € Y. Then v € ®U).
(FR3) By Lemma 9.4.
(FR4) It is trivial.
(FR5) By Proposition 4.9, it is easy. O
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Theorem 9.6. For a saturated multiplicative system S of a triangulated category
C which is compatible with the triangulation, let U(S) be the full subcategory of C
consisting of objects X such that QX = O, where Q : C — S™*C s the canonical
quotient. Then W¥(S) is an épaisse subcategory of C.

Hence, ® and ¥ induce one to one correspondence between épaisse subcategories
and saturated multiplicative systems which is compatible with the triangulation.

Proof. Let (QX,QY,QZ,Qu,Qu,Qw) be the image of a triangle (X,Y, Z, u, v, w)
of C. If two objects of QX,QY,QZ are O, then the rest one is clearly O. Then it
is easy to see that U(S) is a triangulated full subcategory of C. If Z € ¥(S) and
u factors through some object of ¥(S), then QZ = O and Qu factors through O.
Therefore, QX = QY = O and hence X,Y € ¥(S). O

Definition 9.7. For an épaisse subcategory U of a triangulated category C, we
denote by C/U the quotient category ®(U)~1C. In this case, we say that 0 — U —
C — C/U — 0 is an exact sequence of triangulated categories.

Proposition 9.8. Let C be a triangulated category, U an épaisse subcategory of C,
and Q : C — C/U the canonical quotient. For M € C, the following are equivalent.
1. For every f : X =Y € ®U), Home(f, M) : Home (Y, M) — Home (X, M) is
bijective.
2. Home(U, M) = 0.
3. For every X € C, Qx,m : Home (X, M) — Home /1, (QX, QM) is bijective.

Proof. 1 = 2. For every object U e U, O — U LU—-0isa triangle. Then
0= HOmc(O, M) = HOIIlc(Uv7 M)
2 = 3. Every morphism of Home /,(QX, QM) is represented by a diagram

X/

I,

where s is contained in a triangle U — X’ = X — TU with U € Y. Then there
exists f': X — M in C such that f = f’s, because Hom¢ (U, M) = 0. Hence Qx
is surjective. Let U — X' — X — TU be a triangle with U € Y. If a morphism
g : X — M satisfies gs = 0, then there exist u : TU — M such that g = wut.
Therefore g = 0, because u € Hom¢(U, M) = 0. Hence Qx s is injective.

3=1 Let f: X - Y be a morphism in ®@f). Then we have the following
commutative diagram

Home(Y, M) 22U Home(X, M)

QY,Ml lQX,M

Hom(Qf,QM)
Home,y(QY, QM) ———"= Home/u(QX,QM)
According to 3, Qx,a and Qy s are bijective. Since QU = 0, Hom(Qf,QM) is
bijective. Hence Hom(f, M) is bijective. O

Definition 9.9 (U-Local Object). An object M is called U-local (resp., U-colocal)
if it satisfies the equivalent conditions (resp., the dual conditions ) of Proposition

98 . Let 0 = U —C 2 C/U — 0 be an exact sequence of triangulated categories.
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The right (resp., left ) adjoint of @ is called a section functor. If there exists a
section functor S, then {C/U;Q, S} is called a localization (resp., colocalization) of

C,and 0 —-U —C N C/U — 0 is called localization (resp., colocalization) exact.

Lemma 9.10. Let {C/U;Q,S} be a localization of C. For every object V € C/U,
SV is U-local.

Proof. For every f: X —Y € ®(U), we have a commutative diagram

Home (Y, SV) 22255V Home(X, SV)

lz lz
Home /5(QY, V) @8V, Home 0, (QX, V)

Therefore Hom (f, SV) is an isomorphism. By Proposition 9.8, SV is U-local. O

Proposition 9.11. Let {C/U;Q, S} be a localization of C, and T : QS — 1¢y and
o:1l¢c — SQ adjunction arrows. Then the following hold.
1. 7 is an isomorphism (i.e. S is fully faithful ).
2. For every object X € C, the triangle U — X 25 SQX — TU satisfies that
Uisinl.
Proof. 1. For every X € C and Y € C/U, we have a commutative diagram
HOIHC (X, SY) e HOIHC (X, SY)

oxer| I

Home 0 (QX, QSY) 229X, Home 1 (QX,Y).

By Proposition 9.8 and Lemma 9.10, Q) x,sy is an isomorphism. Then Hom (QX,
Ty ) is an isomorphism. For any Z € C/U, there exists X € C such that Z = QX.
Hence 7 is an isomorphism.

2. It suffices to show that for any X € C, Qox is an isomorphism. By the
property of adjunction arrows, we have QX Qox, QSQX Tex, QX = 1px, and
hence Qox is an isomorphism. O

Corollary 9.12. Let M € C. Then M is U-local if and only if M = SQM .

Proposition 9.13. Let C and C’ be triangulated categories, F : C — C' a 0- functor
which has a fully faithful right adjoint S : C' — C. Then F induces an equivalence
between C/Ker F' and C'.

Proof. By the universal property of @ : C — C/Ker F, we have the following
commutative diagram

C
o \
C/Ker F — !
If f: X - Y is a morphism in C, then F'f is an isomorphism if and only if Qf is

an isomorphism. For every object M € C, FM — FSF M is an isomorphism, and
then QM — QSF M is an isomorphism. Therefore Q — QSF is an isomorphism.
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By the universal property of @ and QSF = QSF'Q, we have 1¢/kerp = QSF'.
Since, F'QS = F'S = 1¢:, F’ is an equivalence. O

Definition 9.14 (stable t-structure). For full subcategories & and V of C, (U, V)
is called a stable t-structure in C provided that

1. U and V are stable for transations.

2. HOmc(u, V) =0.

3. For every X € C, there exists a triangle U - X — V — TU with U € U and
Vev.

Proposition 9.15. Let C be a triangulated category, (U, V) a stable t-structure in
C. Then the following hold.
1. For X € C, Hom¢(X,V) = 0 if and only if X is isomorphic to an object of U.
2. ForY € C, Hom¢(U,Y) =0 if and only if Y is isomorphic to an object of V.
3. Let U be the full subcategory of C consisting objects which are isomorphic to
objects of U. Then U is an épaisse subcategory of C.
4. Let V be the full subcategory of C consisting objects which are isomorphic to
objects of V. Then V is an épaisse subcategory of C.

Proof. 1. For X € C, we have a triangle

Ux =5 X 5 Vy - TUx.
If Home(X,V) = 0, then ox = 0 and Uy = X®T~'Vx. Therefore, T-'Vy = O
and X = Uy, because of Home(Ux, T~'Vx) = 0.

2. Similarly.
3,4. By 1, 2, it is trivial. O

Proposition 9.16. Let C be a triangulated category. If {V;Q,S} is a localization
of C, then S is fully faithful, (U,SV) is a stable t-structure, where U = Ker Q.
Conwversely, if (U,V) is a stable t-structure in C, then the canonical inclusion S :
V — C has a left adjoint Q such that {V;Q, S} is a localization.

Proof. Let {V;Q, S} be a localization of C. Then, by

Home (U, SV) = Home (QU, V)
=0

and Proposition 9.13, it is clear that S is fully faithful and (U, SV) is a stable
t-structure. Conversely, let (U, V) be a stable t-structure in C. For X € C, let
Ux — X — Vx — TUx be triangle such that Ux € U and Vx € V. Since
Home(U,V) = 0 and U and V are stable under translations, for any V € V, we
have an isomorphism

Hom¢(Vy, V) = Home (X, V).

According to Theorem 1.18, S : V — C has a left adjoint @ such that {V;Q, S} is
a localization. O

Remark 9.17. Similatly, if (U4,V) is a stable t-structure in C, then there is a
functor @ : C — U such that {U;Q, S’} is a colocalization of C, where S’ : U — C
is the canonical embedding. Conversely, if {U;Q, S’} is a colocalization of C, then
(S'U,Ker Q) is a stable t-structure in C.
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10. DERIVED CATEGORIES
Throughout this section, A is an abelian category.

Definition 10.1. For X*,Y" € K*(A), a morphism u € Homc4)(X",Y") is called
a quasi-isomorphism if H"(u) are isomorphisms for all n € Z, where % = nothing,
+5 = b.

K*?(A) is a full subcategory of K*(A) consisting of complexes of which all ho-
mologies are O, where * = nothing, +, —, b.

Proof. Tt is easy to see that K*?(A) is an épaisse subcategory of K*(A). By Propo-
sition 6.26, it is easy. O

Definition 10.2 (Derived Category). The derived category D*(A) of an abelian
category A is K*(A)/ K*’¢(.A), where * = nothing, +, —, b.

Remark 10.3. For two morphisms f,g : X* = Y in C(A4), f =g = f =g =
f=gin D(A) = H"(f) @ H"(g) for all n. The converse implications do not hold.

Proposition 10.4. If O — X* % Y* % 7' — 0 is a exact sequence in C(A), then
it can be embedded in a triangle in D(A)

QX Ly 2% Qzr L QX

Proof. According to Remark 6.10, we have a commutative diagram in C(.A)

0 0
0 X (X7 TX 0
0 yo Y M) % TX 0
vZ. - Zs
0 0

where all rows and columns are exact. Then X* % Y* 25 7+ % TX- is a triangle
in K(A). Since I'(X") € qu(.A)7 by Proposition 6.23, s is a quasi-morphism, and
hence we have a commutative diagram in D(.A)

QX+ —2“ Qv -2 oM (n) -2 TQX-
H H IEX H
-1
QX' Qu QY' Qu QZ Quw(Qs) TQX.

O

Definition 10.5. A full subcategory A’ of A is called a thick abelian full subcate-
gory if A’ is an abelian exact full subcategory which is closed under extensions.
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For % = nothing,+,—,b, we denote by K%, (A) the full subcategory of K*(A)
consisting of complexes X* € K(A) with H"(X*) € A’ for all n € Z.
Moreover, we set D*, (A) = K%, (A)/ K*?(A), where * = nothing, +, —, .

Definition 10.6 (Truncations). For a complex X* = (X% d*), we define the fol-
lowing truncations:

oonX ... = 0—-Imd" — X" - Xn+2 |
USnX':...—>X"_2—>X"_1—>Kerd"—>0—>...,
U/ZHX':...—>0—>Cokd"_1—>X"+1—>X"+2—>...,
o X s X2 o X S Imd -0 — L
T>nX':...—>0—>X"—>X"+1—>X"+2—>...,
T;nX':...—>X"_2—>X"_1—>X"—>O—>....

Then we have exact sequences in C(.A)
O—o0<pn(X') =X —05p(X)— O

O—0d pn(X)—> X —05,(X)— 0
O—=1p,(X") = X = 7<,n(X7) = O
Then it is easy to see that
- O ifi1<n
H X)) = ) -
(750 X7) {H’(X') ifi>n
- O ifi<n
H’L / X. — )
(0720 X") {H’(X') ifi>n
: HY(X") ifi<n
H’L X. — —
CE {o ifi>n
. HY(X") ifi<n
H’L / X. —
(0" <n X) {o ifi>n

Proposition 10.7. The following hold.

1. The canonical functor D*(A) — D(A) s fully faithful, where + = 4+, —.

2. The canonical functor D°(A) — D*(A) is fully faithful, where x = 4, —.

3. The canonical functor D%, (A) — D*(A) is fully faithful, where x = 4+, —,b.
Proof. According to Definitions 10.2, 10.5, it suffices to check the condition of
Proposition 7.16. Let X* € K7 (A), Y* € K(A) and a quasi-isomorphism X* — Y~
in K(A). Then we may assume that there is n such that H (Y*) = 0 for all i > n.
Then the morphism Y* — o<, (Y") is a quasi-isomorphism, and o<, (Y*) € K™ (A).
For the other cases, similarly. |

Let Inj A (resp., Proj.A) be the full subcategory of A consisting of injective (resp.,
projective) objects.

Lemma 10.8. For X* € K(A) and I' € K™ (Inj.A) (resp., P € K~ (Proj A)), if X
is acyclic, then we have

)

HomK(A)(X',I') =
(resp., Homya) (P, X*) =

Corollary 10.9. The following hold.

0
0
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1. If A has enough injectives, then we have an isomorphism
HomK(A)(X',I') &= HomD(A)(X',I')

for X+ € K(A), I € Kt (Inj A).
2. If A has enough projectives, then we have an isomorphism

HomK(A) (P', Y) = HomD(A) (P', Y)
for P € K (Proj A), Y € K(A).
Proof. By Lemma 10.8 and Proposition 9.8, and their dual. |

Lemma 10.10. The following hold.

1. Let L be a collection of objects of A such that every object X € A is a image
of an epimorphism from some object of L. Then for any X* € K™ (A), there
exists P+ € K7 (L) and a morphism f : P — X in K(A) such that f is a
quasi-isomorphism.

2. Let A’ be a thick abelian full subcategory of A such that every object X € A’
is a tmage of an epimorphism from some object of (Proj A) N A'. Then for
any X+ € K4 (A), there exists P € K~ ((ProjA) N A") and a morphism f :
P — X+ in K(A) such that f is a quasi-isomorphism.

Proof. 1. Given an object X € K™ (A), we may assume that X = O for all i > 0.
By the backward induction on n, we construct a complex P+ € K™ (Proj.A). as

follows. Let Z’" and Z" be Z™(P*) and Z"(X*), respectively. Assume we have a
commutative diagram

Z/n>—>Pn

L

X"

We take a pull back M™ of X"~ ! — Z" « Z'™ and take an epimorphism from
P"=1 — M". Then by Proposition 2.19, H*(P*) =2 H"(X*) and the induced mor-
phism Z"(P*) — Z"(X") is epic.

Zm—l pr—1 M1 AA° pn
N
zn—t s xn-l—=xn-1___ 7% . X"

2. Given an object X € K}, (A), we may assume that X* = O for all i > 0. By

the backward induction on n, we construct a complex P+ € K™ ((Proj A) N A'). as
follows. Let B'™ and B" (resp., C'" and C™) be Z"(P*) and Z" (X*) (resp., C"(P")
and C"(X"), respectively. Assume we have a commutative diagram

pr > Cm
X"— ("

where P, C"" € A'. Then B € A’. We take a pull back C'" "' of C"~1 — B" —
B'™. Then by Proposition 2.19, H*~!(P+) = H"~'(X*). Since A’ is closed under
extensions, C'" "' € A'. Therefore we can take an epimorphism from P"~1 —
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C'" 72, with P"~! € (Proj A) N A’. Since P"! is projective, we have a morphism
Pr=1 5 X1 and we have a commutative diagram

pn—1 Cm—l B/n—l pr om
Lol
Xn—l Cn—l Bn—l Xn cn

Proposition 10.11. The following hold.
1. If A has enough projectives, then

t
K™ (Proj A) 2 D™ (A).
2. If A has enough injectives, then

K™ (Inj.A) = DT (A).

3. Let A" be a thick abelian full subcategories of A such that A" has enough
A-projectives in A'. Then we have

D*(A) = D7y (A)

where x = —, b.
4. Let A" be a thick abelian full subcategories of A such that A has enough
A-injectives in A’. Then we have

t
D*(A") 2 Dy (A)
where * = 4+, b.

Proof. 1. By Lemmas 10.8, 10.10, (K™ (Proj.A), K™*?(A)) is a stable t-structure in
K™ (A). According to Proposition 9.16, Remark 9.17, we get the statement.

2. Similarly.

3. Since we have the canonical full embedding K™ (A') — K™ (A), it suffices
to check the condition of Proposition 7.16. Let X- € K™ (A'), Y- € K™ (A), and
Y*" — X' a quasi-isomorphism in K™ (A). Since all homologies of Y* are in A’, by

Lemma 10.10, we have X'* — Y™ is a quasi-isomorphism, with X’* € D™ (A").
4. Similarly. O

Definition 10.12. In the case of A having enough projectives (resp., injectives),
we denote by K™"(Proj.A) (resp., K¥*"(Inj A)) the triangulated full subcategory
of K™ (Proj A) (resp., KT (Inj.A)) consisting of complexes of which homologies are
bounded.

Corollary 10.13. The following hold.
1. If A has enough projectives, then

t
K™ (Proj A) = D"(A).
2. If A has enough injectives, then

K*®(Inj A) = D"(A).
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Example 10.14. For a coherent ring A, let mod A be the full subcategory of Mod A
consisting of right coherent A-modules. Then mod A is an thick abelian full sub-
category of Mod A. Therefore, we have
t
D*(mod A) = Dy, o4 4(Mod A)
where * = —,b. We often write D} (Mod A) for D}, .4 4(Mod A).

Definition 10.15 (Yoneda Ext). For X,Y € A and n € N, let Exact’y(X,Y) be
the set of exact sequences in A of the form

:0O-Y—-X,1—...0Xg—X—>0.

For ¥4, ¥, € Exact’y(X,Y), we write £; — X if we have a commutative diagram

¥, :0 Y X1 . Xo X o)
| H | | |
Yy :0 Y X't . X'o X 0.

And, we define X1 ~ %, if there are ; (2 < i < m — 1) such that ¥, & ¥,
(1 <i<m-—1), where 2 means — or «. Then ~ is a equivalent relation on
Exact’; (X,Y). We denote Exact’y (X,Y)/ ~ by Ext’y (X,Y).

Proposition 10.16. For XY € A and n € N, We have a bifunctorial isomor-
phism
EXtZ\(X, Y) :> HomD(A) (X, TnY)
Proof. Let ¥ € Exact’y (X,Y") has the form
:0O-Y—-X,1—...0Xg—X—>0.

Then we have a commutative diagram

Y[n—-1]:0 Y (@]
(. | |
M*: O Xn—1 Xn—2 X1 Xo O
| | | |
X ] X o

Therefore, we have a triangle Y[n —1] - M* — X RiCIN Y[n]. It is easy to see
that ¢x y : Ext’y(X,Y) — Homp4)(X, Y[n]) is a bifunctorial isomorphism (left to
the reader). O

Remark 10.17. Assume A has enough injectives. For X,Y € A, let
O—-Y—-I'>T1" — ...
be an injective resolution, that is, Y — I* is a quasi-isomorphism. Then by Corol-
lary 10.9, it is easy to see that
EXtZ\(X, Y) = HomD(A) (X, TnY)

= HomD(A) (X, Tnl)

= HomK(A) (X, TnI)

> H"(Homu (X, I)).
The last term is Ext’; (X,Y) in the sense of standard homological algebra.
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Definition 10.18. Let A be an abelian category with enough injectives. A com-
plex X- € K*(A) is said to have finite injective dimension if there is n € Z such
that Homp~(4)(M, X*[i]) = 0 for all M € A and i > n, where * = nothing, +, —,b.

We denote by K*(A)ga the full subcategory of K*(A) consisting of X* € K*(A)
which have finite injective dimension.

Moreover, for a thick abelian full subcategory A’ of A, we denote by K%, (A)ga
the full subcategory of K%, (A) condsting of X* € K, (A) which have finite injective
dimension.

Proposition 10.19. Let A be an abelian category with enough injectives. Then
K*(A)gg and K’y (A)ga are quotientizing subcategories of K*(A).

Proof. For u : X+ — Y+ in K*(A)gg, let X* 5 YV — M(u) — X'[1] be a
triangle. For M € A, by applying Homg«(4)(M,—) to the triangle, we have
M (u) € K*(A)gg. Therefore, K*(A)gq is a triangulated full subcategory of K*(A).
By Proposition 9.2, K*?(A)gq = K?(A) N K*(A)gq is an épaisse subcategory of
K*(A). According to Proposition 7.16, K*(A)gq is a quotientizing subcategory of
K*(A). In the case of K%, (A)ga, similarly. O

Definition 10.20. For % = nothing, +, —,b, D*(A)gq = K*(A)sa/ K (A)ga and
Dl (A)sa = Kl (A)sa/ K™ (A)sa.
Proposition 10.21. Let A be an abelian category with enough injectives. Then
the following are equivalent for X+ € KT (A).

L. For any integer ni € Z there is ny € Z such that Homp(4)(Y*, X*[i]) = 0 for

all i > ny and all complezes Y+ € K+(A) with B (Y*) = O for j < n;.

2. X € KM (A)ga.

3. There exists I' € K" (Inj A) such that X* = I in DT (A).
Proof. 1 = 2. Tt is trivial.

2 = 3. Let n be an integer such that Homp4)(M, X*[i]) = 0 for all i > n. We

take I € K*(Inj.A) which has a quasi-isomorphism X* — I* in K*(A). For i > n,
we have isomorphisms

Homp ) (2'(I)[~i], X*) gome)(Zi(I')J' [i])

This means that the canonical morphisms I*~" — Z*(I*) is split epic, and B*(I*) =
Z'(I*). Then o<,I* — I" is an isomorphism in K(A) and o<, I* € K”(Inj A).
3 = 1. By Corollary 10.9, it is easy. |

Corollary 10.22. Let A be an abelian category with enough injectives. Then we
have a triangle equivalent

K" (Inj A) L D*(A)sa

Proposition 10.23. Let B be an additive full subcategory of an abelian category A
which is closed under direct summands, and Rb (B) the triangulated full subcategory
of K~ (B) consisting of objects which are isomorphic to an object of K°(B) in K~ (B).
Then Rb(B) is an épaisse subcategory of K~ (B).
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Proof. Let X+ € K°(B), and Y~ is direct summand of X* in K~ (B). Then Y" is a
direct summand of X*®I*(Y*) in C™(B). Then we have a split exact sequence in
C(B)
O—-Y —-Xol'Y')—Z — 0.
Since X* € K”(B), there is n € Z such that we have a split exact sequence in C™(B)
O —71<,Y = 1<, I'(YV") = 1<, 2" — O.
Since H (1<, I'(Y*)) = O fori # n and B (1<, I'(Y")) € B, H (1<, Y*) = O fori # n
and BY(7<,Y*) € B. Hence Y* = 0+, oY in K™ (B) with o+, _»Y* € K*(B). O
11. HomoToPY LIMITS

Throughout this section C is a triangulated category with arbitrary coproducts.

Definition 11.1. A triangulated full subcategory L of C is called localizing if
(L1) Every direct summand of an object in £ is in L.

(L2) Every coproduct of objects in £ is in L.

Lemma 11.2. Let £ of C be a localizing subcategory, then C/L has arbitrary co-
products, and the quotient C — C/L preserves coproducts.

Proof. Let {X;}ier be a collection of objects of C. It suffices to show

1. Any collection of morphisms X; o yinc /L can be lifted to a morphism
ILx; Lyinc/c.

2. a morphism J[,X; = Y in C/£ such that all X; % [[,X; LV =01in C/L,
then f =0.

1. A morphism Xj; Y in C/L is a diagram in C

N

X Y
where X; — X; — X, — TX, is a triangle, with X”; € £. Thus we get a diagram
nx,
lu&: o
[1: X Y.

Since [[,X; — [[,Xi — ILX, — TILX; is a triangle, we have a morphism
IL.x; Lyic/c.
2. Given a morphism [],X; Lvinc /L, it corresponds to a diagram

[1; X Y

N

Y
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with ¢ € ®(£). If the composite X; — [[,X; — Y = 0 in C/L, then we have a
diagram in C

Xi —(17) HiXi Y
N

t

Y/

which corresponds to 0 in C/L. Then by Proposition 7.11 and Lemma 9.4, every
X; X, 1,X: I, ¥ factors through Z; € £. Thus f factorizes as

Hz‘Xi > HiZi Y
W
Y’
Since L is localizing, [[;Z; € £ and f = 0. O

Corollary 11.3. Let A be an abelian category satisfying the condition Abj. Then
D(A) has arbitrary coproducts.

Proof. According to Corollary 6.15, K(\A) has arbitrary coproducts. For a collection
of quasi-isomorphisms X; RN Yy (i€ I), H*(I1,f;) = 11, H"(fi) is isomorphic for
all n € Z. Thus Kd)(.A) is localizing, and Lemma 11.2 can be applied. O

Definition 11.4. For a sequence {X; — X;11}tien (resp., {Xiy1 — Xi}ien) of
morphisms in C, the homotopy colimit (resp., limit) of the sequence is the third
(resp., second) term of the triangle

]_LXi L shift, ]_LXi — hlim X; — THiXi

_ . 1— shift
(resp., T 1HiXi — h(h_m X, — HiXi == HiXi)

where the above shift morphism is the coproduct (resp., product) of X; i, X1
(resp., Xi+1 L X,L) (’L S N)
Exercise 11.5. In the category b, prove the following.

1. For a sequence of morphisms {X;;1 ELN X tien, if there is n € N such that f;
1— shift . .
—— [[, X is epic.

. 1— shift .
2. For a sequence of morphisms {X; ELN Xiv1tien, [[;Xi —— [LX is
monic.

are epimorphisms for all i > n, then [, X;

Lemma 11.6. The following hold.

1. Assume A satisfies the condition Ab3. For a sequence of morphisms {X; LN
Xit1}tien, if there is n € N such that f; are split monomorphisms for all
i >n, then we have a split exact sequence

O — HiXi L= shift, HiXi —lmX; — 0.
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2. Assume A satisfies the condition Ab3*. For a sequence of morphisms {X; 41

ELN X tien, if there isn € N such that f; are split epimorphisms for alli > n,
then we have a split exact sequence

0 —limX; — HiXi L= shaft, HiXi — 0.
Proof. 1, For any M € A, we have a commutative diagram
Hom 4([1,X;, M) ——=% Hom(I],X;, M)
| |
1— shif
[1, Homa(X;, M) —=5% T[], Homa(X;, M).

By Exercise 11.5, the bottom horizontal morphism is epic.
2. Similarly. O

Proposition 11.7. The following hold.

1. Assume A satisfies the condition Ab3. and X; — X; | a sequence of com-
plezes in C(A) satisfying that for each j € Z there is n € N such that
Xij — Xin are split monomorphisms for all i > n. Then we have an exact
sequence in C(A)

. 1— shift . . .
0 — HiXi = ]_LXi — lim X; — O
which belongs to Sc(ay- In particular, lim X; = hlim X; in K(A).

2. Assume A satisfies the condition Ab3*. and X;, , — X; a sequence of com-
plexes in 'C(.A) satisfying that for each j € 7Z there is n € N such that
X! — XiJJrl are split epimorphisms for all i > n. Then we have an ezract
sequence in C(A)

0 —lim X; — [ x; 1o skt [[xi—o
which belongs to Sc(ay. In particular, lim X; = hlim X; in K(A).
Proof. 1. By Lemma 11.6, for any j we have a split exact sequence
O — ]_L-Xij L shift, ]_L-Xij — hing — 0.
Then we have an exact sequence in C(.A)
0 — Hinf Lo shift, HiXi. —lim X; — O

which belongs to Sc(4). The last assertion follows by Proposition 6.12.
2. Similarly. |

Remark 11.8. The above lim X; and lim X are the filtered colimit and the filtered
limit in C(A), but are not the filtered colimit and the filtered limit in K(A) (see
Lemma 16.17).

Remark 11.9. 1. If A satisfies the condition Ab5, then for a sequence {X; —
X, 1 }bien of morphisms in D(A), we have exact sequences

0 — [ B*(X;) =[] H"(X;) - H"(hlim X;) — O

for all n € N.
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2. If A satisfies the condition Ab5 and {X; — X;_, }ien a sequence of morphisms
in C(.A), then by Proposition 2.25, 3 we have an exact sequence in C(A)

O—>Hinf —>]_LXz —limX; — O
and we have a quasi-isomorphism
hlim X7 — lim X;.

3. Assume A satisfies the condition Ab4*, and let {X;, | — X:}ien be a sequence
of morphisms in D(A) satisfying that for any n € Z there is k¥ € N such that
H"(X;,,) 2 H"(X;) for all i > k. Then we have exact sequences

O — H"(hlim X;) — [[ H"(X;) — [[ H"(X;) — O
for all n € N.

Proposition 11.10. For an abelian category A, the following hold.

1. If A satisfies the condition Abj with enough projectives, then every object of
K(A) is quasi-isomorphic to a complex P* of projectives with Homga) (P,
K?(A)) = 0.

2. If A satisfies the condition Ab4* with enough injectives, then every object of
K(A) is quasi-isomorphic to a complex P+ of injectives with Homga)(K?(A),
I')=0.

Proof. 1. For a complex X* € K(A), we have morphisms of complexes o<, X* —
o<i+1X" — X*. According to Lemma 10.10, there is P; € K™ (Proj.A) which has a

quasi-isomorphism P; — 0<; X", and we have a commutative diagram in K(.A)

Po—— P

! !

ng‘X' E— U§i+1X.
By Remark 11.9, we have a quasi-isomorphism

hlim P; — hlim o<; X".

By Proposition 11.7, hlim 0<; X* = limo<; X* = X* in K(A). By the construction,

hlim P; is a complex of projectives. Since we have an exact sequence
e

Hi Homy ) (TF;, K?(A)) — Homg ) (P, K?(A)) — Hi Homy 1) (TP;, K?(A)),

we have Homg4)(F", K?(A)) = 0 by Lemma 10.8.
2. Similarly. |

Definition 11.11. 1. In the case that A satisfies the condition Ab4 with enough
projectives, we define the triangulated full subcategory K*(Proj.A) of K(A) con-
sisting of complexes P* of projectives such that Homya)(P", K?(A)) = 0. Then
(K*(Proj . A),K?(A)) is a stable t-structure in K(A).

2. In the case that A satisfies the condition Ab4* with enough injectives, we
define the triangulated full subcategory K*(Inj.A) of K(A) consisting of complexes
I of injectives such that Homy(4)(K?(A),I") = 0. Then (K?(A),K*(Inj.A)) is a
stable t-structure in K(.A).

They are often called K-projective complexes (resp., K-injective complexes).
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Proposition 11.12. The following hold.
1. If A satisfies the condition Abj with enough projectives, then we have an
isomorphism
HomK(A)(P',Y') = HomD(A)(P',Y')
for P € K¥(Proj A), Y € K(A).
2. If A satisfies the condition Ab* with enough injectives, then we have an
isomorphism
HOmK(A)(X',I') = HOmD(A)(X',I')
for X+ € K(A), I € K*(Inj A).

Theorem 11.13. The following hold.

1. If A satisfies the condition Abj with enough projectives, then we have a tri-
angle equivalence

K®(Proj.A) = D(A).

2. If A satisfies the condition Ab4* with enough injectives, then we have a tri-
angle equivalence

K*(Inj.A) = D(A).

Proof. 1. By Proposition 11.10, (K*(Proj A), K?(A)) is a stable t-structure in K(A).
According to Proposition 9.16, Remark 9.17, we get the statement.
2. Similarly. |

Remark 11.14 (Set-Theoretic Remark 2). Conversely, in the case that A satisfies
the condition Ab4 with enough projectives, we can define D™ (A) = K™ (Proj.A), and
D(A) = K*(Proj.A). Then we can bypass Remark 7.7.

Similarly, in the case that A satisfies the condition Ab4™ with enough injectives,
we can define D" (A) = K™ (Inj.A), and D(A) = K*(Inj A).

Proposition 11.15. The following hold.

1. Let C be a triangulated category with coproducts. For a sequence {X; LN
Xit1tien, if there is n € N such that f; are split monomorphisms for all
i > n, then the structural morphism [, X; — hgn X; is a split epimorphism.

2. Let C be a triangulated category with products. For a sequence {X;i1 LN
Xitien, if there is n € N such that f; are split epimorphisms for all i > n,
then the structural morphism hlim X; — [, Xi is a split monomorphism.

Proof. 1. For any M € C and n € N, we have a commutative diagram

Home ([[.77X;, M) ——"% Home([[.7"X;, M
3 K3

| |
[, Home (T X;, M) =" [T, Home (T X;, M).

Then by Exercise 11.5.2, Home ([ [.7"Xi, M) =" Home ([[.77 X;, M) is epic,
y 1 X2

and then T"[ [, X; L shift, T"]1,X; is split monic. Therefore, hlim X; — T][, X; =
0, and hence [[,X; — hlim X is split epic.
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2. Similarly. |

Lemma 11.16. Let C be a triangulated category with coproducts. For a sequence

{X; ELN it1tien where X; = X and f; = 1x for all i, we have an isomorphism in

C

quiLaILX;ﬁ»ﬂr&-ﬂhgpxgLJLTX”%atmmgaamia=§;aXﬁ:
[[,X; — X. By easy calculation, the following hold.
(a) ap=0.
(b) If a morphism ¢ : [[,X; — Y satisfies ¢p = 0, then there is a unique f: X —
Y such that ¢ = fa.

By the property of hlim and the above, there exist h : X — hlim X; and k :
hlim X; — X such that o = kq and ¢ = ha. Since ¢ = hkq and o = kha, we have
hk =1 and kh =1 by (b) and Proposition 11.15. O

Proposition 11.17. Let C be a triangulated category with coproducts. Let e : X —
X be a morphism in C such that €2 = e. Then e splits in C.

Proof. We consider three sequences

A) X SX 5.
(B) X =% x =5 .
(C)X@X’wg]X@X[gﬂ.“.

Then we have an isomorphism a = [, '.¢] : (A)®(B) — (C) of sequences. Thus

hlim (C) =Y & Z in C, where Y = hlim (A), Z = hlim (B). For a sequence (C),

we have a commutative diagram

Lxex) %  [[(XeX); — hin ()
K K
(LX) @ (1,X:) = ([1,x0) @ (1, X.).

By Lemma 11.16, we have hlim (C') = X in C. On the other hand, we have a

commutative diagram

(I1:X:) & (11, X4) (I, X:) @ (11, X3) 2 vez

J- L I

[L(X @ X), 1—shift IL(X & X), Td0D o
where = [29] and v = [¢ 7] are isomorphisms. According to Proposition 11.15,
(0 1) and 8 = [29] are epic, then a and b are epic. Since (1 — e)eb = (1 —
e)(0 1)[17¢] =0, we have (1 — e)e = 0. Similarly, we have en = 0. Hence we have
a morphism ¢ : X — Y such that e§ = e and de = 1y. O

(1—shift)@(1—shift)

Corollary 11.18. Let L be a triangulated full subcategory L of C. If L satisfies
the condition

(L2) every coproduct of objects in L is in L,
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then L is a localizing subcategory of C.

Corollary 11.19. Let R be a commutative complete local ring, A a finite R-
algebra. Then D”(mod A) is a Krull-Schmidt category.

Proof. For a complex Y* € DP(mod A), we may assume that H™(Y*) # 0, H*(Y*) #
0, and H'(Y") = 0 for i < m, n < i for some m < n. We define TL(Y*) = n—m. For
complexes X*, Y € Db(mod A), by induction on the lexicographic order (TL(X"),
TL(Y™)), we show that Hompp (meq 4)(X*,Y") is a finitely generated R-module. Let

Y; = 0<p1(Y*) and Y3 = 05, _1(Y"), then we have a triangle in D" (mod A)
Y=Y =Y, = TY].
Then we have an exact sequence
Hompp (mod 4) (X, Y7) — Hompp imed 4) (X, Y*) — Hompp (moq 4y (X", ¥3).

By the assumption, Homppneq 4)(X*,Y7) and Hompp neq 4y (X", Y3) are finitely
generated R-modules. Then Hompp ;g 4) (X, Y™) is a finitely generated R-module.
Similarly, for a triangle o<,—1(X*) = X* — 05,-1(X") = To<,—1(X"), we have
the same result. In particular, Endpp(meg 4)(X*) is a semiperfect ring. For an
idempotent e € Endps(meq 4)(X*), by Example 10.14, we may consider an idem-
potent in DE(Mod A) C Db(Mod A). By Proposition 11.17, there exist a complex
Y- e Db(Mod A) and morphisms p : X* — Y, ¢ : Y — X* such that gp = e and
pq = ly.. Since every H'(Y*) is a direct summand of H (X*), Y* € D>(Mod A).
According to Proposition 3.7, we complete the proof. O

12. DERIVED FUNCTORS

Throughout this section, A, B and C are abelian categories.

12.1. Derived Functors.
Definition 12.1. A triangulated full subcategory K*(A) of is called a quotientizing

subcategory (often called localizing subcategory) if the canonical functor
K*(A)/ K*?(A) — D(A)

is fully faithful, where K*?(A) = K?(A) N K*(A). If K*(A) is a quotientizing
subcategory of K(A), we denote by D*(.A) the quotient category K*(A)/K*?(A)
and by Q% : K"(A) — D*(A) the canonical quotient functor.

Definition 12.2 (Right Derived Functor). Let K*(A) be a quotientizing subcate-
gory of K(A) and F : K*(A) — K(B) a d-functor. The right derived functor of F is
a O-functor

R*F :D*(A) — D(B)
together with a functorial morphism of d-functors
& € OMor(QpF, R*FQ7%)

with the following property:
For G € 9(D*(A),D(B)) and ¢ € dMor(QgF,GQ%), there exists a unique mor-
phism 1 € dMor(R" F, G) such that

¢ = MU
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In other words, we can simply write the above using functor categories. For
triangulated categories C,C’, the O-functor category O(C,C’) is the category (?)
consgisting of d-functors from C to C’ as objects and J-functorial morphisms as
morphisms. Then we have

O0Mor(QpF,—Q%) = OMor(R*F, —)

as functors from 9(D*(A),D(B)) to Get (See Lemma 1.8).
Definition 12.3. Let K*(A) be a quotientizing subcategory of K*(A) and F :
K*(A) — K(B) a O-functor. When F has a right derived functor R*F': D*(A) —
D(B), we define R' F=H'R"F :D"(A) — B (i € Z).
Proposition 12.4. Let K*(A) be a quotientizing subcategory of K(A) and F :
K*(A) — K(B) a O-functor. Assume F has a right derived functor R*F : D*(A) —
D(B). Then for any exact sequence O — X* —Y* — Z* — O in C(A) we have a
long ezact sequence

= RFX)=RFY)=RFZ)-RMTFX)—....
Proof. By Proposition 10.4, it is easy. O

Theorem 12.5 (Existence Theorem). Let K*(A) be a quotientizing subcategory of
K(A) and F : K*(A) — K(B) a 0-functor. Assume there exists a triangulated full
subcategory L of K*(A) such that
(a) for any X* € K*(A) there is a quasi-isomorphism X* — I* with I' € L,
(b) QsF(L?) = {0},
where L% = K?(A) N L. Then there exists the right derived functor (R*F,€) such
that &1 : QeI — R*FI" is a quasi-isomorphism for I' € L.
Proof. Let E : L — K*(A) be the embedding functor, then by the assumption (a)
and Proposition 7.16 the canonical functor E : £L/L£? — D*(A) is an equivalence.
Let J : D*(A) — L/L? be a quasi-inverse of E. By the assumption (b) and
Proposition 8.7 there is a d-functor F' : £/L? — D(B) such that QgFE = FQ¢,
where Qr : £ — L£/L? is the canonical quotient. Put R*F = F.J. Since Q4E =
EQ,, we have
OMor(QsFE,GQ%E) = 0Mor(FQr,GEQ,)
=~ 9Mor(FJE,GE)
=~ 9Mor(FJ,G).
It remains to show that
OMor(QpF,GQ%) =2 0Mor(QgFE,GQHWE) (¢ ¢F).
Let ¢ € O0Mor(QgF,GQ*%) with ¢E = 0. For any X- € K*(A) there exists I € L
which has a quasi-isomorphism s : X* — I". Then ¢x = (GQ%s) '¢;QsFs = 0,
and hence ¢ = 0. Given ¢ € OMor(QgFE,GQ4E), for any X+ € K"(A), let
dx = (GQ%s) *¢1QpF's for some quasi-isomorphism s : X* — I+, with I € L.
For another quasi-isomorphism s’ : X* — I”", by the assumption (a), we have a
commutative diagram

X —— r

T

I t 7
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where all morphisms are quasi-isomorphisms and I”* € £. Then we have
(GQ%s) " 1QsFs = (GQ%t's) " wrQpFt's
= (GQiuts' ) 1 QuFts’
= (GQ4us) "W QpFs.
It is not hard to see that ¢ € dMor(QgF,GQ%). The last assertion is easy to
check. ]

Corollary 12.6. Assume that there exists an additive subcategory T of A such that

(a) every X € A has a monomorphism to an object in T.

(b) for an exact sequence O - X - Y - Z -0 in AwithX €Z,Y €7 if and
only if Z € T,

(¢) for an exact sequence O — X —Y — Z — O in A with X,Y,Z € Z, then
O—-FX —>FY —FZ— O is exact in B.

For any additive functor F: A — B, R"F : DT (A) — D(B) eaists.

Proof. Let £ = K (Z), then it is easy to see that £ satisfies the conditions of
Theorem 12.5. O

Proposition 12.7. Let K*™*(A) C K*(A) be quotientizing subcategories of K(A)
and F : K*(A) — K(B) a 0-functor. Assume K*(A) has a triangulated full subcat-
egory L such that

(a) for any X+ € K*(A), there exists a quasi-isomorphism X+ — I* with I' € L,

(b) for any X+ € K™ (A), there exists a quasi-isomorphism X+ — I with I* €

LNK™(A), and

(c) @sF(L?) ={0},
where L* = K®(A)N L. Then both F and F
tors (R*F,¢) and (R™(F
morphism

K+ (4) have the right derived func-
K==(4)); ), respectively, and the canonical O-functorial

¢: R™(F

18 an isomorphism.

Proof. By Theorem 12.5 both F and F
(R*F,§) and (R™(F

K**(4) have the right derived functors
K= (A4)), ¢), respectively, and we have a unique O-functorial

morphism
such that |k = (¢Q%)¢. For any I* € L N K™ (A), by Theorem 12.5 both &;

and (; are isomorphisms, so that ¢ is an isomorphism. Thus, since by assumption
(b), the canonical functor @ : LN K™ (A) — D™ (A) is dense, ¢ is an isomorphism.
O

Proposition 12.8. Let K*(A) be a quotientizing subcategory of K(A) and F :
K*(A) — K(B) a 0-functor. Let K'(B) be a quotientizing subcategory of K(B)
and G : KI(B) — K(C) a O-functor. Assume
(a) K*(A) has a triangulated full subcategory L for which the assumptions 1, 2 of
Theorem 12.5 are satisfied,
(b) K'(B) has a triangulated full subcategory M for which the assumptions 1, 2
of Theorem 12.5 are satisfied, and
(c) F(K*(A) c KI(B) and F(£) C M.
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Then F,G and GF have the right derived functors (R*F,€), (R'G, () and
(R*(GF),n) with R*F(D*(A)) ¢ C'(B), and the canonical homomorphism

¢: R (GF) — R'Go R'F
18 an isomorphism.

Proof. By Theorem 12.5 F' and G have the right derived functors (R*F,&) and
(R'G, (), respectively. Let X* € £ be acyclic. Then, since Q(F (X)) = 0, F(X")
is acyclic and Q(G(F(X*))) = 0. Thus, again by Theorem 12.5 GF has a right
derived functor (R*(GF'),n). Also, for any X+ € D"(A), since we have a quasi-
isomorphism X+ — I* with I € £, R*F(X*) = R*F(Q(I')) = Q(F(I*)) € D'(B).
Thus by Theorem 12.5 we have a unique homomorphism of 0-functors

¢: R*(GF) — R'GoR'F

such that (RTGg)(CF) = (¢Q)n. Let I* € L. Then &, (rr and n; are isomorphisms,
so that ¢¢r is an isomorphism. Thus ¢ is an isomorphism, because @ : £ — D*(A)
is dense O

12.2. Way-out Functors.

Definition 12.9 (Way-out Functor). Let A, B be abelian categories, A" a thick
abelian full subcategory of A. Let K*(A) be a quotientizing subcategory of K(A).
A O-functor F : D%, (A) — D(B) is called way-out right (resp., way-out left) provided
that for any ny € Z there exists no € Z such that if X+ € D*(A) is a complex with
H'(X*) = O for all i < ny (resp., i > ny), then H'(FX*) = O for all i < n; (resp.,
7> Tll).

Moreover, F is called way-out in both directionsif F is way-out right and way-out
left.

Lemma 12.10. For a complex X* € C(A), we have triangles in D(.A)
1.

Ton—1 X" = 75, X" — X" [-n] — 75,1 X [1].

H™ (X) (=] = 0ap 1 X = 02 X — H(X7)[1 = 1]
Proof. By 10.6, we have an exact sequence
O—=Y —05, 1 X —05,X" — O,

where Y* : Y"1 — Y" = Imd% ' — Kerdy. Then it is easy to see Y =
H"(X*)[—n]. O

Proposition 12.11. Let A, B be abelian categories, A a thick abelian full subcat-
egory of A. Let F*,G* : D%,(A) — D(B) be 0-functors, and n* € 0 Mor(F*,G*),
where * = nothing, +,—,b. Then the following hold.
1. If n°(X) are isomorphisms for all X € A’, then n® is an isomorphism.
2. Assume that F and G are way-out right. If n*(X) are isomorphisms for all
X c¢ A, thenn™ is an isomorphism.
3. Assume that F and G are way-out in both directions. If n(X) are isomor-
phisms for all X € A', then n is an isomorphism.
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4. Let T be a collection of objects of A’ such that every X € A’ admits a
monomorphism to an object of T. Assume that F' and G are way-out right.
If n*(I) are isomorphisms for all I € T, then n*(X) are isomorphisms for all
Xed.

Proof. 1. Let X+ € D*(A). For n > 0, 05,X* = O, and then n(cs,X*) is an
isomorphism. By Lemma 12.10, 5(0s,_1X") is an isomorphism. Since X* € D"(A),
we get the statement.

2. Let X* € D™(A). For any n € Z, we show that H"(n(X*)) is an isomorphism.
Put n; = n + 1. Then there exists ny € Z such that if Y- € D*(A) is a complex
with H (Y*) = O for all i < ng, then H/(FY*) = O and H(GY*) = O for all i < n;.
Since H (05, X*) = O for i < ny, we have

H"(Fosn,X")=H"YFos,,X") =0,
H" (G050, X*) = H" G0,y X*) = O.

Considering a triangle 0<,,, X* — X* — 050, X" — 0<,, X"[1], we have a commu-
tative diagram

H"(Fo<p,X') —— H"(FX")

| |
H"(Gocn, X*) —— H"(GX").

where all horizontal arrows are isomorphisms. By 1, the left vertical arrow are an
isomorphism, and hence n(H™(X*)) is an isomorphism.

3. Asin 2, for any X* € D(A), n(o=0X*) is an isomorphism. Considering
0<0 X = X — 050X — 0<0X"[1], n(X") is an isomorphism.

4. For X € A, by the dual of Lemma 10.10, there is a resolution I* with each
I' € I. By replacing o by 7 in 1 and 2, we have the statement. O

Proposition 12.12. Let A, B be abelian categories, A, B thick abelian full sub-
categories of A, B, respectively. Let F* : D%, (A) — D(B) be a 0-functor, where x =
nothing, +,—,b. Then the following hold.
1. If F*(X) € D/ (B) forall X € A', then F*(X) € Dp/(B) for all X* € D%, (A).
2. Assume that F and G are way-out right. If F®(X) € Dg/(B) for all X € A,
then F(X) € Dg/(B) for all X* € DX, (A).
3. Assume that F and G are way-out in both directions. If F*(X) € Dg/(B) for
all X € A, then F(X) € Dp/(B) for all X* € Da (A).
4. Let T be a collection of objects of A’ such that every X € A’ admits a

monomorphism to an object of T. Assume that F' and G are way-out right.
If F(I) € D/ (B) for all I € I, then F(X) € Dp/(B) for all X € A'.

Proof. The same as the proof of Proposition 12.12 (left to the reader). O

13. DouBLE COMPLEXES

Throughout this section, A is an abelian category.

Definition 13.1 (Double Complex). A double complex C* is a bigraded object
(CP1), ez of A together with &7 : CP-¢ — CPT14 and d;? : CP7 — CP9F! such
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that
Cq_(cpq dpq Cpq_>cp+1,q)
Cp_(cpq dpq Cpq_>cpq+1)

are complexes satisfying d? 9 db? 4 dFHIgP 1 =0

A morphism f of double complexes X to Y is a collection of morphisms fP9 :
XPq — YP4q guch that f7: X*? — Y*? and fP* : XP* — YP are morphisms of
complexes for all p,q € Z.

We denote by C* (A) the categories of double complexes of A. Auto-equivalences
UARIETEE: CQ(.A) — CQ(.A) are called the translations if (77X*)P? = XPT14 and
(Tidy x )
= —d’;@?q and (T X =) = XP4t! and (Tiidg x )P = —d;;q;l for any complex
X = (X4, P, dP? ), where # = I,11.

Moreover, an r-tuple complex C*' is an r-tuple graded object (CP)pezr of A
together with d¥ : CP — CP*% (1 <14 <r) such that

=0(1<i<r),
didj + djdi =0 for all ¢, 7,

where e; = (0,...,0,1,0,...,0).

ith component

Proposition 13.2. Let Ci(A) (resp., Cri(A)) be the full subcategory of C*(A) con-
sisting of complexes X such that XP1 = O for all ¢ # 0 (resp., p # 0). Then we
have C(A) = Ci(A) = Ci1(A) and C*(A) = C(C1(A)) = C(Crr(A)). In particular,

C*(A) is an abelian category.

Proof. We define a functor Fy : C*(A) — C(Ci(A)) as follows. For any double
complex X = (XP4 &% dh%), Fi(XP9, dVE d% ) = (X1, dify ) where X7 =
(XP4 (=1)4d}E). For a morphism f : X~ — Y=, Fi(f)?? = fP2. Then it is easy
to see that Fy is an equivalence. O

By the above, we can deal with C*(A) as C(Cy(A)) or C(Cr(A)).

Definition 13.3 (Truncations). For a double complex X = (X749, dP, d¥?), we
define the following truncations:

Oifp<n XP2ifp<n

(oL, X" = dImdP?ifp=n (oL, X" ={ Kerd) " ifp=n
XPlif p>n Oifp>n
Oifg<n XPlifg<n

(ol X" Imdi?if g=n (oL, X")P?={Kerd;"ifqg=n
XPlifg>n Oifg>n
XP4if p < o if

(rLoxmpa = § 7 Pl e = (RS T
Oifp>n XPlifp>n
XP2if g <n e Oifg<n

T = =

<X Oifg>n XPaifg>n

Lemma 13.4. For a double complex X = (XP1 dy,dy), the following hold.
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1. We have ezact sequences in C*(A)
0 — UﬁnX" - X" ot X" 50
for alln € 7 with # = I,I1.
2. We have eract sequences in C*(A)
0 — Tan" - X" — Tfn_lX" — 0
for alln € Z with # = I,11. )

Definition 13.5 (Total Complexes). For a double complex X = (X?4, d7"7 dli?),
we define the total complexes

Tot C* = (X",d"), where X" =[] cradr =] o A
p+q=n

p+q=n
A

LU n n _ p.qa Jn _ »q P,q
TotC™ = (Y™, d"), where Y _Hp+q=nc d _Hp+q=nd§’ +db.

Moreover, for an r-tuple complex X' = (XP, d?) (1 <i <), we define the total
complezxes

Tot ¢ = (X", d"), where X" =] = cP.a" =[] _ idf
i=1

TotC" = (Y™, d"), where Y™ = Hm:nC”» dn = Hm:n idf,
i=1

where |p| = |(p1,-..,0-)|=p1+ ... + D0

Lemma 13.6. The following hold.
1. If A satisfies the condition Abj, then the functor Tot : C*(A) — C(A) pre-
serves translations, exact sequences and coproducts.

A
2. If A satisfies the condition Abj*, then the functor Tot : C*(A) — C(A)
preserves translations, exact sequences and products.
Lemma 13.7. For a double complex X = (XP1 dy,dy;), the following hold.

1. If XP9 = O forq <m,n < q form <n and X*? are acyclic complezes in
C(A) for all q, then Tot X is acyclic in C(A) .

2. If XP9 = O for g < m,n < q form < n and XP* are acyclic complexes in
C(A) for all p, then Tot X is acyclic in C(A) .

3. Assume A satisfies the condition Ab4. If XP9 = O for ¢ > n and X9 are
acyclic complezxes in C(A) for all q, then Tot X* is acyclic in C(A) .

4. Assume A satisfies the condition Abj*. If XP7 = O for q < n and X are

acyclic complexes in C(A) for all q, then T?)tX" is acyclic in C(A) .

5. Assume A satisfies the condition Abs. If XP9 = O for ¢ < n and XP* are
acyclic complexes in C(A) for all p, then TotX is acyclic in C(A) .

6. Assume A= Mod A for a ring A. If XP9 = O for q > n and XP* are acyclic

complexes in C(A) for all p, then T?)tX" is acyclic in C(A) .
Proof. 1. Let nx =n —m. By Lemma 13.4, we have an exact sequence in C*(A)
0 — Tgn_lX" — X" — Tan" — 0.
Then by Lemma 13.6, we have the exact sequence in C(.A)
O — Tot 7, ;X" — Tot X — X*"[-n] — O.
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By the assumption of induction on ny, Tot Téln_lX * is acyclic. Then Tot X* is
acyclic because X" [—n] is acyclic.
2. Let nx =n —m. By Lemma 13.4, we have an exact sequence in C*(.A)

O—>01§1n 1 X — X ol X 0.

>n—1

Then by Lemma 13.6, we have the exact sequence in C*(A)
O — Tot a<n (X — Tot X — Totoll, X" — O.
By the assumptlon of induction on nx, Tot Ugn_1X * is acyclic. It is easy to see
that Tot oL, _; X" = M"(1x.n)[—n] is acyclic. Then Tot X* is acyclic.
3. By Lemma 13.4, we have the canonical morphisms in C*(A)
T> TX —> T (7‘+ 1)X

which are term-split monomorphisms for all p,q. Since Tot f, : Tot TS_TX "
Tot TI>I_ r Jrl)X * is term-split monomorphisms in 4, by Proposition 11.7, we have

hlim Tot 72, X+ 2 lim Tot 72'_, X = Tot X*.

By 1, Tot 7-> X is acyclic for all . Then hlim Tot T> X is acyclic, and hence
so is Tot X .

4. Dual of 3.

5. By Lemma 13.4, we have the canonical morphisms in C*(A)

X _> U<r+1X
By Exercise 11.5, we have an exact sequence in C(A)
0 — HT Tot UISITX" — HT Tot UISITX" — lim Tot UISITX" — 0.
Then we have
hhmTota » X =2 lim Tota<TX = Tot X ™.

By 2, Tot o, X is acyclic for all 7. Then hlim Tot o, X" is acyclic, and hence

so is Tot X .
6. Dual of 5. O

Definition 13.8. We define an embedding functor em! : C(A) — C*(A) as follows.
For a complex X- € C(A),

XPifg =
emI(X')pvq:{ ifg=0

O othewise.

Definition 13.9 (Proper Exact). An exact sequence O — X* Ly %z -0
in C(A) is called proper ezact if the induced sequence O — Z'(X*) — Z(Y*) —
7'(Z") — O is also exact. In this case, f (resp., g) is called a proper monomorphism
(resp., a proper epimorphism).

A complex X+ € C(A) is called a proper projective complex (resp., a proper
injective complex) if

. ~ TL
P nje@P ep M (1) [-n — 1]

where P™ Q™ are projective (resp., injective) objects of A.
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Lemma 13.10. For a complex Z* € C(A), the following hold.
1. M- is proper projective if and only if for every proper epimorphism g : X* —
Y+ in C(A), Homc(a) (M, g) is surjective.
2. M is proper injective if and only if for every proper monomorphism f : X* —
Y+ in C(A), Home(a)(f, M*) is surjective.

Proof. 1. If M* is proper projective, then it suffices to check the case that M* =
P[—n] or M*(1p)[—n], where P is a projective object of A, n € Z. For any proper
epimorphism ¢ : X* — Y, we have commutative diagrams

Hom P[—n],
HomC(A) (P[—n],X) M HomC(A) (P[—n], Y)

| |
Hom (P, (X))~ P2 Hom (P, 7" (Y*)),

5 Hom, (M*(1p)[—n],q9) .
Hom () (M (1p)[-n], X*) = . Homc(4)(M*(1p)[-n],Y")

| |
m n—1
Hom 4 (P, X" 1) LomalBe™ ), Hom (P, Y™ 1).

Since P is projective, the bottom arrows of the above diagrams are surjective. Then
the top arrows are also surjective. Conversely, let M* be a complex satisfying the
surjective condition. For any epimorphism ¢g : X — Y in A, we have a commutative
diagram

Ho ey (M*,9[—n])
HomC(A) (M', X[—n]) A HomC(A) (M', Y[—n])

K K
Hom (C" (M), X) 2omal@" M9 yom  (0"(M), Y).

Since g[—n] : X[—n| — Y[—n] is proper epic, the top arrow is surjective. Then
C™ (M) are projective objects of A. It is easy to see that

M@ M n -1,

where p” : C"(M*) — B"(M*) are the canonical epimorphisms. We have a commu-
tative diagram

Homc(a)(M*(p™),M"(g))

Home(4)(M*(p"),M"(1x)) Homc(4)(M*(p"),M"(1x))

| |
Hom_4(B™ (M"), X) Homa(B"(M).9), Hom 4(B" (M), Y).

Since M*(p™) is proper projective, the top arrow is surjective, and then the bottom
arrow is surjective. Therefore B"(M*) is a projective object of A. Hence M- is
proper projective.

2. Similarly. O

Lemma 13.11 (Proper Resolutions). Assume that A has enough projectives (resp.
injectives). Given a complexr M+ € C(A), there are proper projective complexes
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(resp., proper injective complexes) X*™ (n > 0) which has a proper projective reso-
lution (resp., a proper injective resolution) in C(A)
N X.—l _ X.O M= O
(resp., O — M+ — X0 — X1 — ).
Proof. For a complex M- € C(A), we have exact sequences in C(A)
O—-7Z(M)— M —B(M)[1] -0
O—-B(M)—7Z(M)—-H(M)—O.
For each B"(M"), there is a projective object @™ which has a epimorphism Q™ —
B"(M*). Then we have an epimorphism @, ., M'(1gn)[-n] — B'(M*)[1] and
its lift P, ., M (1gn)[-n] — M. For each H"(M"), there is a projective ob-
ject P™ which has a epimorphism P" — H"(M*). Then we have a morphism
D,z P [—n] — B(M*) and its lift @,,,P"[-n] — Z'(M*) — M-. Then it is
easy to see that @, ,P"[—n| ® @, c; M"(1gn)[—n] — M is proper epimorphism.
Then by induction we complete the proof. O

The above proper resdution ... — X7t — X0 (resp., X' — X1 — ...)is
called a proper projective (resp., injective) resolution of M* (they are often called
Cartan-Eilenberg resolutions).

Proposition 13.12. The following hold.
1. Assume that Asatisfies the condition Abj with enough projectives. Given a
complex M* € C(A), let w: P* — M- be a proper projective resolution. Then
Tot 7 : Tot P — M*

is a quasi-isomorphism in K(A), and Tot P € K*(Proj A).
2. Assume that Asatisfies the condition Ab4* with enough injectives. Given a
complex M+ € C(A), let p: M+ — I be a proper injective resolution. Then

A A
Totp : M* — Totl™
A
is a quasi-isomorphism in K(A), and Totl" € K*(Inj A).

Proof. 1. We can consider 7 : P+ — M- as 7 : P+ — em'M- in C*(4). Then we
have a commutative diagram

1
1 P T<n™ I IM.
Ufn E— Ugnem

al lﬁn

I
ol pr 2=, ol em! M-
<n+1 <n+1

where ay,, B, are term-split monomorphisms. Therefore we have a commutative
diagram

T<n™
Totol P+ —"— o<,M"

Tot anl lﬁn

I W  7<nT .
T0t0§n+1P — o<pp1 M
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where Tot av,,, [3,, are term-split monomorphisms, and all horizontal morphisms are
L T
quasi-isomorphisms, because Tot(ok, P RSN oL,em!'M") is acyclic by Lemma
13.7. According to Proposition 11.7, we have isomorphisms in D(.A)
. I pe
Tot P =lim Tot o, P
= hlim Totox,, P
= hlim o<, M*

=limo<, M

- M.

On the other hand, since Tot ok, P~ € K™ (Proj.A), Tot P+  hlim Totol, P~ €
K* (Proj A).

2. Similarly |

Definition 13.13. For a morphism u : X — Y of double complexes, we define
the complexes My (u), Mij(u) as follows.
My (u)P? = Xrtlha g ypra
, _dp+1,q 0
g ) = [ Wi d{"{}}

dPa _ [atx® o
T M (u) 0 ayy e

. 1
MH(U)p’q — XPat @ YPa
.q _ _dp,q+1 0
d?M"(u) B [ 0 aryg

11 1Y
Jq+1
_dﬁg{*— 0 ]

P _
11 Mj; (u) [ uPtLa dﬁv’{/

Proposition 13.14. For a morphism u : X — Y of double complexes, the fol-
lowing hold.

1. Tot My (u) = M*(Tot u).

2. Tot My (u) = M*(Tot u).

14. DERIVED FUNCTORS OF BI-O-FUNCTORS

Definition 14.1 (Bi-O-functor). For triangulated categories C1,Co and D, a bi-
O-functor (F,01,05) : C; x Co — D is a bifunctor F' : C; x Ca — D together
with bifunctorial isomorphisms 6y : F(T¢,—,?) = TpF(—,?), 62 : F(—,T¢,7) =
TpF(—,?) such that
(a) For each object Xy € Ci, F(X1,—) = (F(X1,—),02(x,,-)) : C2 = D is a
O-functor.
(b) For each object X € Cp, F(—, Xs) = (F(—,X2),6h(_ x,) :C1 — Disa
O-functor.

For bi-O-functors (F,01,05),(G,n1,m2) : C1 X Co — D, a bifunctorial morphism
¢ F — G is called a bi-0-functorial morphism if (Tpg)bh = mo(Te, X 1c,),
(Tp )02 = m29(1c, x Tc,).

We denote by 92(C1 x Ca, D) the collection of all bi-O-functors from C; x Ca to
D, and denote by 9% Mor(F, G) the collection of all bi-d-functorial morphisms from
F to G.
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Proposition 14.2. Let C1,Cy and Cs be triangulated categories, U; épaisse subcat-
egories of C;, and Q; : U; — C;/U; the canonical quotients (i = 1,2). Assume a
bi-O-functor F = (F,61,02) : C; x Co — C3 satisfies that

(a) F(lh,Cy) ={0}.

(b) F(C1,U) ={0}.

Then there exists a unique bi—a—junctorf = (F,01,05) : C; /Uy x Cy/Uy — C3 such
that F = F(Ql X Q2) and 91- = Hi(Ql X Q2) (Z = 1,2).
Cl X CQ
QlXQzl F

Cl/ul XCQ/UQ _f_ >Cg

gketch. We define the functor F : C; /Uy x Co /Uy — C3 as follows. For X; € Ci, let
F(@Q1X1,Q2X3) = F(X1, Xp). For [(fi,si)] : Xi — Y5 in C; /U;, let F([(f1, 1)),
Q2X3) = F(s1, X2)'F(f1,X2), F(Q1X1,[(f2: 52)]) = F(X1,s2) ' F(X1, f2). Let

T;, T; are trandations of C;, C;/U;, respectively (i = 1,2,3). Then we define

F(T1Q:1X1,Q2Xs) == F(Q1T1 X1, Q2X5) == F(T1 X1, X>)
. \ \jel(Xl,Xg)
01(Q1X1,Q2X2)
T3F(Q1X1,Q2X0) == T3F (X1, X>)
F(Q1X1,T2Q2Xs) == F(Q1 X1, QT2 X») == F(X1,T2X>)
. \ \jez(Xl,Xg)
02(Q1X1,Q2X2)
T3F(Q1X1,Q2X,) == T3F (X1, X»)

Then it is not hard to see that F satisfies the assertions (left to the reader). O

Proposition 14.3. Let C1,Cy and C3 be triangulated categories, U; épaisse sub-
categories of C;, and Q; : U; — C;/U; the canonical quotients (i = 1,2). For
bi-O-functors F = (F,01,02),G = (G,n1,m2) : C1/Ur x Co/Us — C3, we have a
bijective correspondence
0> Mor(F,G) = 9% Mor (F(Q1 x Q2),G(Q1 x Q2)), (¢ ¢(Q1 x Q2)).
Definition 14.4 (Right Derived Functor). Let A; be abelian categories, and let
K*(A;) be a quotientizing subcategory of K(A;) and F : K™ (A4;) x K2(Ay) —
K(As) a bi-O-functor (¢ = 1,2,3). The right derived functor of F is a bi-0-functor
R F : D" (A;) x D*2(A2) — D(Aj3)
together with a functorial morphism of bi-O-functors

£ € *Mor(Qa, F, RV F(Q x Q%))

with the following property:
For G € 0*(D™* (A1) x D™2(Az),D(As)) and ¢ € 0?Mor(Qa,F, G(Q%, x Q%))
there exists a unique morphism 1 € 8% Mor(R**"*?F, G) such that

¢=mQY%, x Q%))
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In other words,
& Mor(Qa, F, —(Q%, x Q2)) = 0> Mor(R" " F, —)
as functors from 9?(D*(A;) x D™?(A2),D(A3)) to Set (See Lemma 1.8).

Theorem 14.5 (Existence Theorem). Let A; be abelian categories (i = 1,2,3),
and let K (A;) be a quotientizing subcategory of K(A;) and F : K™ (A;) x K*2(Az)
— K(A3) a bi-0-functor. Assume there exist triangulated full subcategories L; of
K*(A;) (i =1,2) such that

(a) for any X; € K*(A;) there is a quasi-isomorphism X; — I; with I; € L;,

(b) Qa,F (£1>£2) {0},

(©) QusF(L1,£5) ={0},
where Ef = K?(A;) NL; (i = 1,2). Then there exists the right derived functor
(R F,§) such that &1, 1)+ Qa,F (I3, 13) — R"F(I3,13) is a quasi-isomorphism
for (I1,13) € Ly X Ls.
Proof. Let Q; : K*(A;) — D*(A;) be the canonical quotients, and let E; : £; —
K**(A;) be the embedding functors, then by the assumption 1 and Proposition
7.16 the canonical functor E; : Ei/ﬁf — D*(A;) are equivalences (i = 1,2). Let
Ji - D*(A;) — Li/L? be quasi-inverses of E; (i = 1,2). By the assumption 2, 3
and Proposition 14.2 there is a bi-O-functor

F:Ly/L0 % Ly)LS — D(As)

such that Q3 F(E; x Es) :E(Q’1 x@Q'y), where Q'; : L; — Ei/ﬁf are the canonical
quotients. Put R*V™F = F(Jl X JQ) Since (QlEl X Q2E2) = (ElQ/l X EQQIQ),
we have

82 MOI‘( E(El X EQ) (QlEl X Q2EQ))

= 9> Mor(F(Q', x Q'5), G(Er1Q' 1 x EaQ)'5))

= 82 MOI‘(F(JlEl X JQEQ) G(El X Eg))

= 82 MOI‘(F(Jl X JQ) )

= 0> Mor(R*"*F,G)
It remains to show that

9° Mor(Q3F, G(Q1 x Q2)) = 0> Mor(QsF(Ey x E»), G(Q1E1 x Q2E»)),
(¢ — o(E1 x E3)).

Let ¢ € 92 Mor(Q3F, G(Q1 x Q2)) with ¢(E1 x Ep) = 0. For any X; € K" (A4;)
there exists I; € £; which has a quadi-isomorphism s; : X; — I; (i = 1,2). Then

bx;.xy) = G(Q151,Q252) "1y, 13)Q3F (51, 52)

)

and hence ¢ = 0. Given ¢ (S 0?2 MOI‘(QgF(El X EQ),G(QlEl X QQEQ)), for any
X; € K" (4y), let

D(x1,x) = (G(Qr51,Q252)) "1y 1) Q@3 F (51, 52)

for some quasi-isomorphism s; : X; — Ir, with I; € £; (i = 1,2). For another
quasi-isomorphism s'; : X; — I}, by the assumptions 1, we have commutative
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diagrams

X; 2 I

S/il lt/i

t.
/e i "
I'L' I [

where all morphisms are quasi-isomorphisms and I”; € £; (¢ = 1,2). Then we have

(G(Qr51,Q252)) " U(r;,15)Q3F (51, 52)

= (G(Qut'151, Qat'252)) " Yy 1) Q3 F (151, 1252)

= (G(Qut15'1, Qatas'2)) " Yy 1) Q3F (t151, 125" )

= (G(Q15'1,Q25"2)) "1y, 17)Q3F (51, 5'2)
It is not hard to see that ¢ € 9% Mor(Q3F, G(Q1 X Q5)). The last assertion is easy
to check. O

Proposition 14.6. Let A; be abelian categories (i = 1,2,3), and let K*(A;) be
a quotientizing subcategory of K(A;) and F : K (A1) x K*2(A) — K(A;3) a bi-0-
functor. Assume there ezists a triangulated full subcategories L; of K*(A;) (i =
1,2) such that

(a) for any X; € K*(A;) there is a quasi-isomorphism X; — I; with I; € L;,
(b) Qu, F(LT, K™ (A)) = {0},
() Qu,F(Ly, £5) = {0},
where £ = K*(A) N L; (i =1,2). Then we have
1. There is a bi-O-functor R{*™F : D**(A;) x K**(A2) — D(A3) such that
& Mor(Qua, F, —(Q%f, X 1ke2(ay))) = 0> Mor(R{V ™ F, —),
and R;V™F(—,X5) is the right derived functor of F(—,X2) for any X, €

K*2(As).
2. There is a bi-O-functor R R{"™F : D™ (A;) x D*?(A) — D(A3) such
that
&” Mor(R{*™F, —(1p=1 (4,) X Q%)) = 9° Mor(Rj{ " R ™ F, ),
and

OMor (R F(X4,7), -Q}) = OMor (R "™ RV F(X41,7),—)
for any X7 € K*'(Ay).
3. We have an isomorphism
& Mor(Q, F, —(Q%, x Q%)) = 8> Mor(Rj} ™ R{""™F, —).
In particular, R R{"™F =~ R"™""™F.

Proof. According to the construction of the right derived functor of a bi-O-functor
in the proof of Theorems 14.5, 12.5, it is easy (left to the reader). O

Corollary 14.7. Let A; be abelian categories (i = 1,2,3), and let K**(A4;) be a
quotientizing subcategory of K(A;) and F : K™ (Ap) x K*2(A2) — K(A3) a bi-0-
functor. Assume there ezists a triangulated full subcategories L; of K*(A;) (i =
1,2) such that

(a) for any X; € K*(A;) there is a quasi-isomorphism X; — I; with I; € L;,



66 JUN-ICHI MIYACHI

(b) Qu, F(LY, K™ (A2)) = {0},
() QuF(K™ (A1), L5) = {0},
where £ = K*(A) N L; (i =1,2). Then we have
1. There is a bi-O-functor R{*™F : D**(A;) x K**(A2) — D(A3) such that
& Mor(Qa, F, —(Q%, X 1k=2(ay))) = 8* Mor(R{"™F, —),
and R;V"F(—,X5) is the right derived functor of F(—,X2) for any X, €
K*2(As).
2. There is a bi-O-functor R} F : K (A;) x D*2(Ay) — D(A3z) such that
0 Mor (Qa, F, _(1K*1(A1) x Qjélgz)) = MOI“(RTI“*QF, =),
and R} F(Xy,—) is the right derived functor of F(Xy,—) for any Xy €
K*1(Ay).
3. We have an isomorphism
R*17*2F [ R}‘IL*QRTL*QF [ R;ﬂ,*z R}‘IL*Q F.
Definition 14.8 (Hom’). For a complexes X*,Y" € C(A), we define the double
complex Hom’ (X*,Y™) by
Hom%?(X",Y") = Hom4 (X 7, YY)
y= Hom%(d?~", YY)
(=1)PTet Hom% (X P, d..),

P,q

I Homy(X",Y"
dr1 —

IT Homry(X+,Y")

and define the complex Hom'(X",Y™) by
A
Tot Hom (X, Y").
Then it is easy to see that
Hom’, : C(A)°P x C(A) — C(Ab)
is a bifunctor.
Lemma 14.9. For complezes X, Y € C(A), we have an isomorphism
H" Homry (X, Y*) 2 Hom (4 (X", T"Y").
Proof. By the definition, for (u”?)p44=r € Hom'y (X", Y") we have
dﬁo mr, (X,Y) ((unq)p%—q:?“)
= (PP + (—1)Pr gLt € Homfj'l(X',Y').
Put w = f,i= —p,r = n, then f~5*" . X’ - Y™™ for all 5 and we have
dﬁomA(X,Y)((f_i’H")z‘eZ) . N
= (T (1)
Then it is easy to see that Ker dﬁom.A(Xy) = Homc( ) (X", T"Y"). Put u = h,i =
—p, 7 =mn—1, then h=5"—1 . X%  Yitn—1 for all 5 and we have
dﬁgilh(X,Y)((h_i7i+n_1)i€Zl) -
— (h—z—l,z+ndz)(_ + (_l)nd?—nh—z,z+n—l)iez.

Then this means Imdpo 0. vy = Hepea) (X7, T7Y). O

Lemma 14.10. For a complezes X*,Y* € C(A), the following hold.
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L. dHom:A(X',TY') = _TdHom;l(X',Y')
2. dHom:A(T—lX',Y') = TdHom:A(X',Y')
3. Define 077 : Hom%* (T~ X", Y*) — Hom? “%(X*,Y") by the identities, then
we have an isomorphism
0, : Hom(, O(’T_1 X ]-C(A)) S To Homy .
4. Define 05 : Hom%*(X", TY") — Hom%*™ (X, Y") by (—1)P*9, then we have
an isomorphism
0 : Homy o(]-C(A) X T) S To Homy .
Lemma 14.11. For a morphism u: X* — Y* in C(A) and N* € C(A), the follow-
ing hold.
1. Hom'y (N*, M"(u)) = M (Hom" (N*, u)).
2. Hom'y (M- (u), N*) 2T~ M*(Hom’, (u, N*)).
Proof. 1. The double complex Hom (N*, M*(u)) has the following form
Hom%?(N*,M*(u)) = Hom4 (M7, X7 @ Y7

D,q _ Honl(dxl(p+1),X) 0
1H  (N+ M- - —(p+1)
om'; (N*, M- (u)) 0 Hom(d,*7"Y)
P _ [ (=1)PT*2 Hom(M,d%) 0
I[THomry (N*,M"(u)) — (=1)Ptat Hom(M,u?) (—1)Ptatt Hom(M,d%,)

On the other hand, the double complex Mj;(Hom™ (N*,u)) has the following form
My} (Hom? (N, u)) = Hom 4 (M7, X & Y7)

JP:a _ |- Honl(dxl(p+1),X) 0
T My (Ho nti (N*,u)) 0 Hom(d,"*VY)
s _ [(=prrett Hom(M,dgH) 0
1T Msy (Hontg (N*,u)) Hom(M,u?) (—1)ptatt Hom(M,d3.)

Then it is easy to see that morphisms [(—1())p+q ﬂ : ME Y (Hom 3 (N*,u)) —

Hom%?(N*,M-(u)) induce an isomorphism between them in C*(A). By Proposition
13.14, we get the statement.
2. The double complex Hom; (M"(u), N*) has the following form

Hom%?(M-(u), N*) = Hom4 (X ?™ @ Y7, M?)

q [ — Hom(dy",M) 0
IHom; (M*(u),N*) — Ho m(uP,M) Hom(d‘_,p_l,M)
q _ [(=nrrett Hom(X,d},) 0
11 Hom'; (M- (u),N*) 0 (=1)PT9t 1 Hom(X,d%,)

On the other hand, the double complex T; * My (Hom? (u, N*)) has the following
form

(T My (Hom®y (u, N*)))P*? = Hom (X ™ @ Y7, M9)

dp,q_l _ [ Hom(dy",M) 0 ) :|
[Ty~ My (Hom*; (u,N*)) — Hom(u?, M) — Hom(dy? ™, M)

qP-a _ [(—1)P+7+1 Hom(X,d%,) 0 }
IITI_1 M; (Hom?; (u, N*)) 0 (_1)p+q+1 Hom(X,d’]IM)

Then it is easy to see that morphisms [§ % ] : (Z7 " My (Hom (u, N*)))P? —
Hom??(M*(u), N*) induce an isomorphism between them in C*(A). By Lemma
13.6 and Proposition 13.14, we get the statement. O
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Proposition 14.12. The bi-functor Hom’, : C(A)°P x C(A) — C(Ab) induces the
bi-0-functor

Homy : K(A)P x K(A) — K(2b).
Proof. By Lemmas 14.10, 14.11 and Corollary 6.16, it is easy. |

Proposition 14.13. Let FF: A — A, G : A — A be additive functors between
abelian categories such that G 4 F. Then we have a functorial isomorphism
Hom', (GX*,Y") = Hom'y, (X", FY™).
Theorem 14.14. The bi-0-functor Homy : K™ (A)°P x K*2(A) — K(2(b) has the
right derived functor R****Hom’y : Hom’y : D™ (A)°P x D*2(A) — D(Ab) if it
satisfies the following.
1. If A has enough projectives, then
R *°Hom', ezits and R™°° Hom’y & Ry R;"* Hom’
2. If A has enough injectives, then
R Hom’, exits and R Hom’y = Ry Ry’ Hom?y
3. If A satisfies the condition Abj with enough projectives, then
RHom’, ezits and RHom’y = R Ry Hom’y
4. If A satisfies the condition Abj* with enough injectives, then
RHom’y exits and RHom’y = Ri Ry Hom’y
5. If A satisfies the conditions Ab4 and Ab4* with enough projectives and with

enough injectives, then
RHom:4 =~ R R; Homy = RiRy; Homy

Here oo means “nothing”.
Proof. By Lemma 14.9, Corollary 10.9, Propositions 14.6, 14.7 can be applied. O

Remark 14.15. In the above 5, for complexes X", Y* € K(A), we take P+ €
K*(Proj A) I € K*(Inj.A) which have quasi-isomorphisms P* — X, Y* — I". Then
we have an isomophisms

RHom’, (X", Y*) = Hom', (P",Y")= Homr, (X, I') = Homr, (P*, I').

Corollary 14.16. Assume that A satisfies one of the conditions of Theorem 14.14.
For X* € D**(A), Y € D*2(A) and n € Z, we have an isomorphism

H™ R***2 Hom’, (X", Y*) 2 Homp (X", Y"[n]).
Proof. By Proposition 11.10 and Lemma 10.10, for X* € D**(A4), Y* € D*?(A), we
have either a quasi-isomorphism P* — X* or a quasi-isomorphism Y* — I* with
P € K**(Proj A), I' € K*2(Proj A). According to Corollary 10.9 and Proposition
11.12, we have one of isomorphisms
H™ R**2 Hom’y (X*,Y") = H" Hom’y (P*,Y")
= HomK(A) (P, Y [n])
& Homp ) (X", Y*[n]),

H" R™*2 Homy (X*,Y") 2 H" Hom’, (X", Y")
= Homg ) (X", I*[n])
= Homp4) (X", Y"[n]).
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Definition 14.17. For a complex X* of right A-modules and a complex Y of left
A-modules we define the double complex X* &4 Y* by

Py
X' @AY = XPRaY1

P =dB@aYT
IX'®aY"

ar? . — (_1)p+qXp®Aqu
IIX ®Y"

and define the complex X* ® AY" by
TotX" G4 Y".
Then it is easy to see that
®4 : C(Mod A) x C(Mod A®) — C(Ab)
is a bifunctor.

Lemma 14.18. For a complexes X* € C(Mod A),Y" € C(Mod A°?), the following
hold.

d . =-Td .
(TX')@AY' X' ®aY"
X-@,TY" - X @Y-
P,q p+lyq . .
3. Define 071 : (TX") @4 Y — X* ® aY" by the identities, then we have an
isomorphism

01 : @40 (T X Lemod a)) = T o ®a.

, ,q+1
4. Define 057 : X~ I()X()IA TY — X* pﬁ@ A Y" by the (—1)P*4, then we have an
isomorphism

0 : ®A o (1C(ModAop) X T) 5 TO@A.
Lemma 14.19. The following hold.
1. For a morphism u : X* — Y* in C(Mod A?) and N* € C(Mod A) we have
N* @4 M (u) = M (N* @4 u).
2. For a morphism u : X* — Y* in C(Mod A) and N* € C(Mod A®) we have
M- (u) @4 N* 22 M (u &y N°).
Proposition 14.20. The bi-functor @4 : C(Mod A) x C(Mod A%®) — C(2b) in-
duces the bi-O-functor
®a4 : K(Mod A) x K(Mod A®) — K(2b).
Lemma 14.21. Let Dz = Homg(—,Q/Z) : Mod A — Mod A°P (resp., Dy =

Homyz(—,Q/Z) : Mod A°® — Mod A). Then the following hold.

1. For an sequence X —Y — Z of A-modules, X — Y — Z is exact if and only
if DgZ — DzY — Dz X is exact.

2. For an A-module M, M is a flat A-module if and only if Dz M is an injective
A-module.
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Theorem 14.22. The bi-0-functor @, : K(Mod A) x K(Mod A%®) — K(2b) has
the left derived functor

@k : D(Mod A) x D(Mod A%?) — D(2b).

Proof. For X* € K(Mod A), Y* € K(Mod A°P), we have isomorphisms (see Proposi-
tion 15.4)

Dy(X @4 Y") = Dy(Tot X &4 Y")
A .-
= TOtDz(X' [ Y)
A
= Tot Hom?op (X, DzY™)
>~ Hom'yop (X, DzY™).
By Lemma 14.9, we can apply Proposition 11.12 to the above isomorphism. Then
by Lemma 14.21, for P+ € K*(Proj A) and Y* € K(Mod A°?), P* @4 Y* are acyclic
either if P is acyclic or if Y~ is acyclic. According to the left derived version of
Theorem 12.5, we complete the proof. O

Remark 14.23. In the above, for complexes X* € K(Mod A), Y € K(Mod A°P),
we take P+ € K*(ProjA) Q" € K*(Proj A°P) which have quasi-isomorphisms P+ —
X', @ — Y". Then we have an isomophisms

X 0Ly 2 P, Ve Xr@,aQ = ProsQ-.
For X € Mod A and Y € Mod A°P, we denote Tor’y(X,Y) = H{(X®LY).

15. BIMODULE COMPLEXES

Throughout this section, k is a commutative ring, A, B,C are k-algebras, 4Upg
an A-B-bimodule, gV an B-C-bimodule, 4 W an A-C-bimodule and ¢S4 a C-
A-bimodule.

Proposition 15.1. The following hold.
1. HOHlAOP®kB(AUB,H0mC(BVC,AWC)) = HOonp®kc(AU®BVC,AWC).
2. Homaor g, B(aUB, Home (8Ve, aWe)) =2 Hompg, cor (8Ve, Homa(aUg, aAWc)).
3. (AU®BVe)®awg,c(cSa) = (aUp)®awe, 5(BV®cSa).
4. If AUp is A®° ®y B-projective, Vo is C-projective, then \URQp Ve is AP ®C-
projective.
5. If gV is B-flat, s\We is A°P®yC-injective, then Home(gVe, aAWe) is
A°PRy, B-injective.
6. If gV is B°P®y,C-projective, AW is A-injective, then Homec(pgVe, aAWe) is
A°PRy, B-injective.
7. If AUp is A°P®y B-flat, Vo is C-flat , then AUV is A°PRyC-flat.
Corollary 15.2. The following hold.
1. AU is A-projective, Vi is C-projective, then sURVe is AP ®C-projective.
2. gV is B-flat, AW is A-injective, then Homy (g Vi, AWy) is A°P®y, B-injective.
3. AU is A-flat, Vi is C-flat, then 4UR®L Vo is A°P®,C-flat.
Proposition 15.3. Let AM be an A-module, gN a B-module, then the following
hold.
1. HomAOP®kB(AUB>H0mk-(BBk->Avk-)) = HomA(AU,AV).
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. HOmA(AM,AW) = HOonp®kc(AM®kCC,AWC).

. URpN = (AUB)®A0p®k3(3N®kAA).

. If B is k-projective, AUp is A° @i B-projective, then AU is A-projective.
. Cis k-flat, A\W¢ is AP ®C-injective, then aW is A-injective.

. B is k-flat, ,Up is A°P®B-flat, then AU is A-flat.

Proposition 15.4. For U € K(Mod A®®;B), V' € K(Mod B®,C?), W* €
K(Mod A°P®,C), S* € K(Mod C®i,AP), the following hold.

1. We have an isomorphism

S U= W N

Homyep g, 5(aUg, Homp (5Ve, aWe)) = Homyopg, o (AU* @5 Ve, aWE).
2. We have an isomorphism
Hom'yer g, 5(aUs, Homg (5Ver, aWe)) = Homg, con (5Ve, Homy (aUg, aWE)).

3. We have an isomorphism

(AU ®p V) @avrg,c (054) = (aUf) @ame, 5 (BV @0 Sy)-
Proof. 1. Let a be the trifunctorial isomorphism in 1 of Proposition 15.1. For every
(p,q,7) € Z3, define
Gp,qr = (—1)

r(2g+r+1) — —
2 « HOonp®kB(AUBp,HOmc(BVC q,,qWé)) —

HOH}AOP@kC(AU_p@BVCTq) AW5)7

A
then (¢p,q,») induces the isomorphism between triple complexes. By taking Tot, we
have the assertion.

2. Let 3 be the trifunctorial isomorphism in 2 of Proposition 15.1. For every
(p,q,7) € Z3, define
¢/p,q,7“ = (_1)

(p+9) (pt+q+2r+1) — —
2 ﬁ : HOonp®kB(AUBp,HOmc(BVC q,,qWé)) —

Homper g, c (Ve ! Homa(aUg", AWE)),

A
then (¢p,q,») induces the isomorphism between triple complexes. By taking Tot, we
have the assertion.

3. Let v be the trifunctorial isomorphism in 3 of Proposition 15.1. For every
(p,q,7) € Z3, define
Vp,gr = (—1)

r(2g+r—1)

v : (AUP@pVE)@awg,c(cSh) —
(AUR)®aw e, B(BV®cSh),

then (¢p,q,») induces the isomorphism between triple complexes. By taking Tot, we

have the assertion.
O

Proposition 15.5. The following hold.

1. For a functor —®4 Uy : K(Mod A) — K(Mod B) and its right adjoint
Homz(4Ug, —) : K(Mod B) — K(Mod A), there exist the left derived functor

— ® LUy : D(Mod A) — D(Mod B) and the right derived functor
RHom%(4Uyp,—) : D(Mod B) — D(Mod A) such that

RHom(— ® LU, ?) 2 RHom'y (—, RHomy (4 Uy, ?)).
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In particular, we have — @ kU3 4 RHom (4 Uy, ?).

2. For a right adjoint pair of functors Hom:y(—, aUg) : K(Mod A°?) — K(Mod B),
Homz(—, aUyp) : K(ModB) — K(Mod A°P), there exist the right derived
functors RHom’ (—, 4Uy) : D(Mod A°P) — D(Mod B), RHomp(—, aUy) :
D(Mod B) — D(Mod A°P) such that

RHomyz(—, RHom (7, AUj)), = RHom' (?, RHomyz(—, aUg)).
In particular, (RHom’ (7, AUy), RHomyz(—, aUy)) is a right adjoint pair.

Proof. 1. Let X* € K(Mod A?), Y € K(Mod B). According to Theorems 14.14,
14.22 and Remark 14.15, we may assume X* € K*(Proj A), Y € K*(Inj B). It is clear
for the existence of the derived functor. By Proposition 15.4 we have isomorphisms

RHomy (X' @ LUy, V") = Hom’y (X* @4 Up, Y")
>~ Hom'y (X", Homz(uUg,Y"))
>~ RHomy (X*, RHomp (4aUp,Y")).
We get the last assertion by taking cohomologies of the above isomorphisms.
2. Let X* € K(Mod A°P), Y € K(Mod B). According to Theorem 14.14 and

Remark 14.15, we may assume X* € K*(Proj A?), Y € K*(Proj B). It is clear for
the existence of the derived functor. By Proposition 15.4 we have isomorphisms

RHom%(Y", RHom'y (X", 4Up)) = Homp (Y, Hom, (X", AUg))
~ Hom'y (X, RHomp (Y*, 4U}y))
>~ RHom' (X", RHomp(Y", AUg)).

We get the last assertion by taking cohomologies of the above isomorphisms. O
Remark 15.6. The above derived functors —®%U3, : D(Mod A) — D(Mod B) and
RHompz(4Up,—) : D(Mod B) — D(Mod A) are the derived functors of d-functors

— ®4 Uy and Hom (4Us, —), respectively. But they are not the derived functors
of bi-0-functors in general!

We denote by Resy : Mod AP ®, B — Mod A the forgetful functor, and use the
same symbol Resa : K(Mod A°P®;, B) — K(Mod A) for the induced d-functor.

Proposition 15.7. If B is k-projective or C is k-flat, then
RHom, : D(Mod B ®;A)® x D(Mod C®? @, A) — D(Mod C°? ®y, B)
exists, and we have a commutative diagram

Res%’ x Resa
AT A,

D(Mod B® ©,, A)°P x D(Mod CP ©,, A) D(Mod A)°P x D(Mod A)

R Hom, l lR Hom’y

D(Mod C? ®, B) Resk D(Mod k)

Proof. Assume B is k-projective. According to Proposition 15.4, for p Xy €
K(Mod B @y A), Y; € K(Mod A), we have

Hom.Bop®kA(BX:4> Homk (k'BBa kYA)) = HomA(XAa YA)

If Xy € K*(Proj B°? ®, A), then by the above isomorphism, we have Ress X* €
K*(Proj A). Therefore we get the assertion by Theorem 14.5.
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Assume C' is k-flat. For ¢Y; € K(Mod C°P @ A), X € K(Mod A), we have
Hom.cfop®kA(CC ®k Xu,cYh) =2 Homy (X3, Y4).

If ¢Y; € K¥(InjC® ®; A), then by the above isomorphism, we have RessY" €
K*(Inj A). By the same reason as the above. O

Proposition 15.8. If either A or C is k-flat, then
&4 : D(Mod A°P@y, B) x D(Mod B® @, C) — D(Mod A® ®y, C)
exists, and we have a commutative diagram

D(Mod A°P®,, B) x D(Mod B® @, C) —<22Xle5, 1y (Mod B) x D(Mod BP)

o5 e
D(Mod A°P @, C) Res D(Mod k)
Proof. Assume A is k-flat. For X+ € K(Mod A°P®,B), Y* € K(Mod B°), by
Proposition 15.4, we have an isomorphism

(AXB) ®Aop®3 (BY.®I§AA) >~ X ®B Y:.

If 4 X5 € K*(ProjA°? ®; B), then by the proof of Theorem 14.22, X* ®p Y is
acyclic if either X* or Y+ is acyclic. Therefore we get the assertion by Theorem
14.5. In case of C being k-flat, similarly. |

Example 15.9. Let F be a field, k = A = F[[z]], B = C = F|[[z]]/(2?). Let
AMp = F[[z]]/(2?), ANc = F, R' Hom’; the right derived functor of

Hom’, : K™ (Mod B?®;A)® x KT (Mod C°P®;, A) — K(Mod CP @y, B).
Then we have
R Homy (M, N) = Hom (F|[[z]]/(z?), F).

Let RHom’, be the right derived functor of Hom?, : K~ (Mod A)°° x Kt (Mod A) —
K(Modk). Then we have

RHom, (M,N) = X" - X!

2
where X0 — X' = Hom (F[[z]], ) 222425, Hom 4 (F[[a]], F). Then

R How, (M, N) 2 RHom, (M, N)
in D(Mod k).
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16. TiLTING COMPLEXES

Throughout this section, A, B, C' are rings. We recall that mod A is the category
of finitely presented right A-modules, and that proj A is the full subcategory of
mod A consisting of finitely generated projective right A-modules.

Definition 16.1 (Perfect Complex). A complex X* € D(Mod A) is called a perfect
complex if X is isomorphic to a complex of Kb(proj A) in D(Mod A). We denote by
D(Mod A), e the triangulated full subcategory of D(Mod A) consisting of perfect
complexes.
Lemma 16.2. For X* € K" (Proj A), the following are equivalent.

1. X" is a compact object in K (Proj A).

2. X+ is isomorphic to an object of K”(proj A).
Proof. 2 = 1. By Lemma 16.3.

0 .

1 =2 Let X =X° % X' & ... = X", with X' € ProjA. By adding
P 5 P to X*, we may assume that X° is a free A-module A, If I is a finite
set, then by 2 = 1 X0 is also compact, and hence 71 X" is compact. by induction
on n, we get the assertion. Otherwise, Since we have Homy(voq 4) (X", AD)) =
Homg mod 4)(X*, A)), the canonical morphism X* — AU factors through a direct

summand g : A™ — AU for some m € N. Then there is a homotopy morphism
h: X' — AD such that 1,40 — pg = hd® with some g : AD — A™. Let AU =

0
A"HAM) be the canonical decomposition, then A) S, v ph 40y La,
where p : AU) — A is the canonical projection. Therefore X* = M*(14(5))[—1] @
X", where X" : A™ — X" — ... — X" with X’" being a direct summand of X?.
Then we reduce the case of X° being a finitely generated free A-module. O

Lemma 16.3. For a complex X* € K(Proj A), the following hold.

1. X+ is a compact object in K(Mod A).
2. There is a complex P+ € K” (proj A) such that X* = P+ in K(Mod A).

Proof. 2 = 1. We may assume X' € K"(projA). Let {Y;}ies be a collection of
complexes of K(Mod A). Since a finitely generated A-module is a compact object
in Mod A (see Exercise 2.8), we have isomorphisms

Hom;,(X',HieIYi') = Tot Hom’ (X, []._ ¥7)
=[] _, Tot Hom3 (X", Y;)
el
= Hiel Hom, (X, 7).
By taking cohomology, we have an isomorphism
Homgmod 4) (X7, HieIY".) = Hiel Homg(mod 4) (X, Y7).
1 = 2. Since C'(X*) = @, C"(X*)[—i], we have isomorphisms in b

]_L.eZ Homkproj 4) (X, CH(X")[—i]) = Homg proj 4) (X", @iez qi(X')[—i])
= HieZ HOmK(proj A) (X, c (X) [—7,]) .
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Then it is easy to see Homy pyoj 4) (X", C*(X*)[—i]) = 0 for all but finitely many
i € Z. Therefore for all but finitely many ¢ € Z, we have exact sequences
Hom 4 (X C*(X")) — Homu (CH(X"),CH(X")) — O.

This means that the canonical morphisms C*(X*) — X! are split monomor-
phisms. Then there are m < n such that X* = o'>p0<, X" 0'5m0<, X" €
K(Proj A). Then we may assume X' : X* — X' — ... — X" with H*(X") # 0,
H"(X") # 0. By the proof of Lemma 16.2, we get the statement. O
Proposition 16.4. Let X' be a complex of D*(Mod A), where * = nothing, —.
Then the following are equivalent.

1. X+ is a perfect complex.
2. X' is a compact object in D*(Mod A).

t
Proof. Since K*(ProjA) = D(Mod A), it is trivial by Lemma 16.3. O

Lemma 16.5. Let T+ € K"(proj A) with Hompymod 4)(T*,T*[i]) = 0 for i # 0, and
B = Endg(mod 4)(T'). Then there exists a fully faithful O-functor F': K~ (Proj B) —
K™ (Proj A) such that

1. FB=T".

2. F preserves coproducts.

3. F has a right adjoint G : K~ (Proj A) — K™ (Proj B).

Skip. This lemma is important. But the proof is out of the methods of derived
categories. O

Lemma 16.6. If T" satisfies the condition (G), then F : K~ (Proj B) —
K™ (Proj A) is an equivalence.
(G) For X+ € K™ (ProjA), X+ = O whenever Homy- (po; 4) (1", X*[i]) = 0 for all
1.

Proof. Let X* € K™ (Proj A) such that GX* = O. Then Homy - (pyo; 4) (1", X*[i])
= Homg- (pyoj gy (B, GX"[i]) = 0 for all i. Therefore KerG = {O}. By the left
version of Proposition 9.13, G and F' are equival ences. [l

Definition 16.7. Let C be a triangulated category. A subcategory B of C is said
to generates C as a triangulated category if C is the smallest triangulated full sub-
category which is closed under isomorphisms and contains 5.

Remark 16.8. Let C be a triangulated category. For a subcategory B of C, we
can construct the smallest triangulated full subcategory £B which is closed under
isomorphisms and contains B as follows.

Let £°8 = B. For n > 0, let £"B be the full subcategory of C consisting of
objects X there exist U,V € E"~1B satisfying that either of (X, U, V, *,*,%) or
(U,V, X, %,%,%) is a triangle in C. Then it is easy to see that EB = |J,,~,E"B is
the smallest triangulated full subcategory which is closed under isomorphisms and
contains B

Theorem 16.9. Let T" be a complex of K® (proj A) such that
(a) Homgmod 4)(T",T"[i]) = 0 for i # 0,
(b) add T generates K (proj A).

Then F : K™ (Proj B) — K™ (Proj A) is an equivalence.
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Proof. Tt suffices to show that T" satisfies the condition of Lemma 16.6. Since
add T generates K®(proj A), if Homy- (pyo; 4y (1", X*[i]) = 0 for all 7, then

Lemma 16.10. For X* € D™ (Mod A), the following are equivalent.
1. X* € D”(Mod A).
2. For any Y* € D™ (Mod A), there is n such that Hompvoeq 4 (Y", X*[i]) = 0 for
all i < n.
Proof. 1 = 2. We may assume X* € C’(Mod A), Y* € K™ (Proj A). Then
Hompmod 4) (Y, X*[i]) = Homk(mod 4) (Y™, X [i]).
2 = 1. Since Homp(mog av) (A, X*[i]) = H'(X"), it is easy. O

For an additive category Band m < n, we write K™ (B) for the full subcategory
of K(B) consisting of complexes X* with X* = O for i <m, n <i.
Lemma 16.11. For X* € D’(Mod A), the following are equivalent.
1. X" is isomorphic to an object of K®(Proj A).
2. For any Y* € D*(Mod A), there is n such that Hompmod a(X*,Y"[i]) = 0 for
all i > n.

Proof. 1 = 2. Tt is trivial. .
2 = 1. We may assume X* € K™ (ProjA). Let M =[],., C'(X*). By the same
reason as the proof of Lemma 16.3, Homg- (vog 4) (X", M[i]) = 0 for all i > n if and

only if X* is isomorphic to an object in K7™ (Proj A). O
Theorem 16.12. Let A, B be rings. The following are equivalent.
¢
D™ (Mod A) = D™ (Mod B).
¢
DP(Mod A) = D”(Mod B).
¢
K" (Proj A) = K (Proj B).
¢
K" (proj A) = K (proj B).
There exists T* € K" (proj A) with B = Homyw (o0 4) (1) such that
(a) HomK(Mod A)(T,T[l]) =0 fO?”i 75 0,
(b) add T generates K (proj A).
6. There exists T* € K" (proj A) with B = Homyw (o0 4) (1) such that
(a) HomK(Mod A)(T,T[l]) =0 fO?”i 75 0,
(b) For X+ € K™ (ProjA), X* = O whenever Homy - (p,q; 4)(T", X*[i]) = 0 for
all i.

Proof. By Theorem 16.9, Lemmas 16.6, 16.10, 16.11 and 16.2. O

Remark 16.13. Since the functors Homa(—, A) : K®(proj A) — K" (proj A°) and
Homyu(—, 4) : Kb(proj A%P) — Kb(proj A) induce a duality between them, the con-
dition 5 of Theorem 16.12 induces the left version of the condition 5. Therefore,

t t
D~ (Mod A) = D~ (Mod B) if and only if D~ (Mod A®) = D~ (Mod B*®).

Crk W e

Definition 16.14. A complex T € Kb(proj A) is called a tilting complex for A
provided that

1. HomK(Mod A)(T,T[’L]) =0 for 7 7é 0.
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2. add T generates Kb(proj A).
We say that B is derived equivalent to A if there is a tilting complex 1% such

that B = EndK(Mod A) (T)
Lemma 16.15. Let U be a collection of objects KI™*! (proj A) for some r < s. Con-
Ui = Uy — Xi —

sider a sequence of triangles
Us[l] = Xj — X5 —

Uiln=1 =X, = X, —

with all U; € U. Then hlim X;, € K~ (proj A).
Proposition 16.16. For rings A, B, the following are equivalent.

1. B is derived equivalent to A.

t
2. K™ (projA) =2 K™ (proj B).
t
= K~"(proj B).
t
=~ K"(proj B). B

In this case, we have K_’b(proj A)
Proof. 1 = 2. According to Theorem 16.12, we have K’ (proj A)

t
Lemma 16.15, it is easy to see that K™ (proj A) = K™ (proj B)
2 = 1. Let X* € K™ (proj A). Since ), cyT<—nX" exists in K™ (proj A), if X" is
Homg (mog 4) (X" T<—nX") =0

a compact object in K™ (proj A), then
for all but finitely many n. If Homgwoq 4)(X*,7<—nX") = 0, then by Proposi-
According to Proposition 10.23 X* €

tion 4.8, X* = 75 _, 1 X' ®1<_, X" [-1]
if X* is isomorphic to an object in K”(projA). Since compactness is a categor-
O

-1
K (proj A). As a consequence, X* is a compact object in K™ (proj A) if and only
t
ical property, we have K®(projA) = K"(proj B). By Theorem 16.12, we get the

statement.
The last assertion is trivial by Lemma 16.10.

Lemma 16.17. For P € C"(Proj A), we have isomorphisms in K" (Proj A)
hlim TZ—’iP. = h_n>1C_'b(Proj A)TZ—’L'P.

—_
Y M .
= hm K_'b(Proj A)TZ—'iP

Proof. According to Proposition 11.7, we have the first isomorphism. For Y €
C~"(ProjA), there is n € Z such that H'(Y") = 0 for all i < n. Applying
Homg(mod 4)(—, Y"[j]) to a triangle 7> _;41 P — 7>_;P* — P~'[i] — 7>_;41 P*[1],
Hi
j —

we have an exact sequence

Hom(mod 4y (P[], Y*[j]) — Homy moq 4)(T>—i P, Y"[j])
Homk(mod 4)(T>—i+ 1P, Y [j]) — Homkwmod 4y (P~ [i], Y"[5 + 1])
=0

By Exercise 6.22, we have
Homy o 4)(P~% Y*[j — i+ 1]) =2 Hom 4 (P~*, B/ ="} (Y*))
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fori > j7—mn+1, and then p; are epic for i > j —n+ 1. By Exercise 11.5, we have
an exact sequence

0 — Homk (Mod A) (im ¢~ b (proj 4y 7> —i P, Y™) — Hi Homk(mod 4)(T>—i P*,Y") —
Hi Hom (mod 4y (T>—i P, Y") — 0.
Hence

im - (proj 4) T2 —i P = i kb (proj 4) T —i -
|

Proposition 16.18. Let A, B be coherent rings. The following are equivalent.

1. B is derived equivalent to A.

t
2. D™ (mod A) =2 D™ (mod B).
t
3. D"(mod A) = D"(mod B).
Proof. 1 = 2, 3. By Proposition 16.16.

3 = 1. By Corollary 10.13, D®(mod A) and D"(mod B) are triangle equivalent
to K_’b(proj A) and K_’b(proj B), respectively. Then we have an equivalence F' :
K_’b(proj A) — K_’b(proj B) and its quasi-inverse G : K_’b(proj B) — K_’b(proj A).
We may assume that G(B) = @ : ... — Q! — Q% and F(A) = P : ... —
P! — P"™. By Proposition 11.7, 7< _1 P* = lim7>_;7<_1 P*. Since G is an equiv-
alence, by Lemma 16.17 Gr<_1P* = lim k- b (pyoj 4)GT>—iT<—1 P in K=" (proj B).
Since Gr<_1P* € K_’b(proj B), there exists k € Z such that Hk'(GTS_lP') #0
and B/ (Gr<_,P*) = 0 for all j > k. Let C; = CF(Gr<_1P"), then C; =
Ck'(GTS_lP') € K_’b(proj A) and Hom (proj 4y (GT<_1 P*, C;,[—k]) # 0, because A is
coherent. Therefore, there is m > 1 such that Homg prja)(GT>—mT<—1P*, C}[—k])
# 0. Then we have m < 0, because Q" € K=ol (proj A). Since

HomK(proj A)(P.an—lp.) = HomK(pmj A)(A, GT§_1P') = HO(GT§_1P') =0,
by Proposition 4.8 7>0P* = P*@®1<_1P'[—1]. According to Proposition 10.23, P* €
K’ (proj A), and hence Py is a tilting complex. O

17. TwoO-SIDED TILTING COMPLEXES

17.1. The Case of Flat k-algebras. Throughout this subsection, k is a commu-
tative ring, A, B, C are k-algebras which are k-flat modules. See Propositions 15.7,
15.8.

Theorem 17.1. Let A; be an k-algebra with a tilting complex T} whose endomor-
phism is isomorphic to B; (i =1,2). Then T; Rk Ts is a tilting complex for A1 ®y Ay
whose endomorphism is isomorphic to By R®yBs.
Proof. Since Tij is A;-projective, by Proposition 15.1 we have isomorphisms for all
i)j? k? l
HomAl®kA2 (le®kTg ) T1k®kT21) = HomAl (Tfa HomAl (T2]7 T1k®kT21))
= Homa, (T}, A1)® 400 Ty @4 T3® 4, Hom a, (T3, As)
=~ Homy, (T}, T{)®y Hom a, (T3, T4).
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This induces an isomorphism between quadruple complexes. Since T} are bounded
complexes, we have an isomorphism between complexes

Homy, o, 4, (15 @5 T3, T; @3 T3) = Homy, (17, T7) @y Homy, (T3, T3).
Since A;, B; are k-flat, we have isomorphisms in D(Mod k)
Howyy, (T3, T7) &y Homiy, (T3, Ts) = Homy, (T, T7) & § Homiy, (T3, T3)
= Endg(mod a,)(T7) ®F Endk (Mod 4,)(13)

~ B ® LB,
= B1®kBs.

Thus Homg(mod 4,0, 4,) (1] @ Ty, T; @ Ts[i]) = 0 for i # 0. It is easy to see that

Endg(mod A, @,45) (15 =3 Ts) = B1®y, By as k-algebras.

Let ' = Ai®r— : Kb(proj Ag) — Kb(projA1®kA2). Since addT; generates
K" (proj As), add A, ®, T3 generates K” (proj A1 @5 Az). Let G = —®3Ts : K (proj A)
— KP(proj A1®1As). Since add T} generates K”(proj A,), the triangulated full sub
category generated by addT1®; T35, contains add Ay®;T5. Therefore add 71 ®: 75
generates K (proj A; @5 As). O

Proposition 17.2. Let A be a k-algebra which is derived equivalent to a k-algebra
B. Then we have isomorphisms

HH;j, (A, A) = Extyop g, a(A, A)
= Extop, (B, B)
= HHy (B, B).

Here HH;, means Hochschild homology.

Proof. Let T* be a tilting complex for A whose endomorphism ring is isomorphic
to B. By Theorem 17.1, T"®;T"* is a tilting complex for A? ®; A whose endo-
morphism ring is isomorphic to B°P®y B, where T** = Homy (7", A) According to
Lemma 16.5, there is a equivalence F' : DP(Mod B°*®;B) — D"(Mod A% @, A)
which sends B°*®; B to T"®,T+*. Let X* € D (Mod B°*®y, B) such that FX* = A
in D”(Mod A°?®}, A). Then we have

H"(X*) = Hompo vmog por g, 5y (BT @B, X*[n])
= Hompo (mod aor @, 4) (1" @K1, Aln])
= Hompp (pog 4y (17, T [n])
& Hompp (vog 4) (17, T+ [n]).

Hence X* = B in D®(Mod B°*®, B). O

Definition 17.3. Let A be a k-algebra which is derived equivalent to a k-algebra
B, and Pr a tilting complex for A whose endomorphism ring is isomorphic to B.
Then we have a triangle equivalence F : D’(Mod B) — D"(Mod A) which sends
B to P-. We take a complex @ of Kb(proj B) which is isomorphic to F~'A in
Kb(Mod B), and P* = Homy (P, A), @ * = Homp(Q", B). Then a tilting complex
B®y, P induces the triangle equivalence

DP(Mod B°P®;, B) — DP(Mod B°P®,, A).
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D (Mod A°P®y, A) | D”(Mod B® @, A) | DP(Mod AP, B) | D" (Mod B® @y, B)
A T - B

Let T* be the image of B of Db(Mod B°P® B). Also, a tilting complex A®;Q™*
induces the triangle equivalence

DP(Mod A°P®;, A) — D" (Mod A°P@y, B).
Let TV* be the image of A of D”(Mod AP @, A).
Proposition 17.4. The following hold.
1. RessT" 2 P+ in D"(Mod A).
2. RespoT" =2 Q" in Db(Mod B®).

3. RespTV" = @ in D"(Mod B).
4. Reson TV 22 P in D”(Mod A).

Proof. 1. We have isomorphisms of functors K™ (proj A) — Mod k

Hompmod A)(—, ResaT") & Homp(Mod Bor @, A) (B*®;—,T")
= HomD(Mod Aop @, A) (P'*(X)k.—, A)
= Homp(mod 4y (—> P™)
= HomD(Mod A)(—,P').

2. We have isomorphisms of functors K™ (proj A) — Mod k

Homp mod por) (—; Resper T*) = Homp (mod Bory 4) (— @k A, T7)
= HomD(Mod Bop®kB)(_®kQ' ) B)
= Hompmod Ber) (—, Q).

3, 4. Similarly. O
Lemma 17.5. There is an isomorphism ¢ : P* — ResaT* in D(Mod A) such that

of = M f)¢ for all f € Endpmod a)(P*), where A : B — Endp(mod a)(ResaT™) is
the left multiplication morphism.

Proof. For f € Endp(mod a)(P*), by the above isomorphisms, we have a commuta-
tive diagram

Ho mp(umod 4)(—; ResaT*) ———— Hompwmod por @, 4) (B ®,—, T*) ———— Hompvod a)(—, P*)
Hom(= A(/) | |Hom(rore—.a) | o=
Homp(Mod 4)(—, ResaT*) ———— Hompmed BoP @, 4) (B @k —, T") ———— Homp(mod 4)(—, P*).

O
Theorem 17.6. For x = nothing, +, —, b, the O-functor
— ®ET": D*(Mod B) — D*(Mod A)
s an triangle equivalence, and its quasi-inverse is

R*Hom 4(T", —) = — @ £*TV* : D*(Mod A) — D*(Mod B).
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Proof. For a complex X* € D*(Mod B), X* @ 5*T* =~ X* ©5 Q™ in D(Mod k). Then

- ® LT is a way-out in both directions. Similarly, R* Hom 4(T*, —), — ® Lxve
are way-out in both directions. Therefore we have the above functors between the
above derived categories. By Proposition 17.4, We have

ResaT" @ %*Respon TV =2 P @ &* P
= Endp+ (Mod 4)(P")
=B

By Lemma 17.5, we have 7" @ &*TV- = B in D(Mod B® ®;B). Similarly we have
TV*@ET+ = Ain D(Mod A°°®; A). Then — ® 5*T* is an equivalence. By adjoint-
ness, we have R* Hom (7", —) = — @ E*TV-. O
Definition 17.7 (Biperfect Complex). A complex X* € D(Mod A ®y, B) is called
a biperfect complexr if ResaX* € D(Mod A)pers and Respor X+ € D(Mod B°P) eyt

We denote by D(Mod A°P®y, B)pipert the triangulated full subcategory of
D(Mod A°P®y, B) consisting of biperfect complexes.

Definition 17.8. A bimodule complex pT% € K(Mod B®®)A) is called a two-
sided tilting complex provided that
1. gT% is a biperfect complex.
2. There exists a biperfect complex 4Ty such that
(a) pT" @ Ty = B in D"(Mod B® @, B),
(b) ATV" @ ET7 = A in DP(Mod A°P®), A).
We call 4Ty the inverse of gT%.

R*Hom4(T+,—) : D*(Mod A) — D*(Mod B) is called a standard equivalence,
where * = nothing, +, —, .

Theorem 17.9. The following are equivalent.
t
1. D(Mod A) = D(Mod B).

¢

2. D" (Mod A) = D" (Mod B).

3. A is derived equivalent to B.

4. There exists a two-sided tilting complex gT%.

Proof. By Theorem 17.6 and the dual of Lemma 16.10. O

Corollary 17.10. Let T and ¢Sy be two-sided tilting complezes. Then ¢Sy @
LTy is a two-sided tilting complex.

17.2. The Case of Projective k-algebras. Throughout this subsection, k is
a commutative ring, A, B,C are k-algebras which are k-projective modules. See
Propositions 15.7, 15.8.

Lemma 17.11. Let X, P be B-A-bimodules such that Resa P is a finitely gener-
ated projective A-module. Then the following hold.

1. For a right A-module M and a left A-module N, we have B-module morphisms
M®4Homu (X, A) — Homu (X, M) (m&f — (x— mf(x))),

X®aN — Homy(Homy (X, A), N) (z@n+— (f — f(z)n)).
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2. We have a functorial isomorphism of functors Mod A — Mod B
—®4 Hom 4 (P, A) =2 Homu4 (P, —).

3. We have a functorial isomorphism of functors Mod A°? — Mod B°P
P®s— = Hom 4 (Homyu (P, A), —).

Lemma 17.12. Let X* € D*(Mod B°?®;, A) with Res, X* € D*(Mod A), e, where
* = nothing, +, —,b. Then the following hold.

1. We have a O0-functorial isomorphism of 0-functors D*(Mod AP ®;A) —
D*(Mod A°*@;, B)

— ®E*RHom" (X", A) = R* Hom’, (X", —).

2. We have a 0-functorial isomorphism of O-functors D*(Mod AP ®; A) —
D* (Mod B @y, A)

X' ®L*— =~ R*Hom’, (RHom’, (X", A), -).

Proof. 1. By Lemma 17.11, we have a 0-functorial morphism of d-functors
D*(Mod A°?®;, A) — D*(Mod A% @4, B)

¢: —®LYRHom, (X", A) —» RHom" (X", —).

Let @ € Kb(proj A) which has a quasi-isomorphism @* — ResyX*. By Lemma
17.11, we have a 0-functorial isomorphism of d-functors D*(Mod A) — D*(Mod k)

¥ — ®4 Hom'y (Q, A) = Hom', (@, —).

Since
Reskp = 9,
and H'( 9is an isomorphism, ¢ is a functorial isomorphism.
2. Similarly. |

Corollary 17.13. Let T* and TV be a two-sided tilting complex and its inverse.
Then we have isomorphisms in DP(Mod B%® @, A)

TV = RHom' (T*, A)
~ RHomj(T", B).

Theorem 17.14. For a bimodule complex gT%, the following are equivalent.

1. Ty is a two-sided tilting complex.

2. BTy satisfies that
(a) BT is a biperfect complez,
(b) The right multiplication morphism pa : A — RHomy(T",T") is an iso-
morphism in D(Mod AP ®,A),
(¢) The left multiplication morphism Ap : B — RHom'(T",T*) is an iso-
morphism in D(Mod B°P®y, B).

3. BTy satisfies that
(a) gT% is a biperfect complex,
(b) Hompp pod gory (17, T7[i]) = 0 for i # 0,
(¢) Hompy mog 4y (17, T"[i]) = 0 for i # 0,
(d) The right multiplication morphism pa induces a ring isomorphism A —
Endpb (mod gory (1),
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(e) The left multiplication morphism Ap induces a ring isomorphism B —
Endpb (Mod 4y (T7)-
Proof. 1 = 3. By Corollary 17.13, Lemma 17.12, we have isomorphisms in
D(Mod B®®.B)
RHom(T",T") = pT* ® K RHom, (T", A)
=~ pT @ 5Ty
=~ B.

And we have an isomorphism in D(Mod A® ® A)

RHom (T, T") = RHomy (1", B) @ 5T

ATV @ BTy
A.

1R

Since —®ET is an equivalence, we have a commutative diagram

Hompwmod 5) (B, Bg) —— Homp(mod 4)(BRETy, BOETY)

I l

A
B 5, Homp(mod 4y (T, T7)

where all vertical arrows are isomorphisms. Then Ap is an isomorphism. Similarly,
pA is an isomorphism.

3 = 2. Tt is easy to see that we have a morphism A4 : A — RHom%z (7", T") in
D(Mod A°P®, A). By taking cohomologies, we get the condition (b) of 2. Similarly,
we get the condition (c) of 2.

2 = 1. Let TV = RHom’, (7", A), then we have isomorphisms

T @ ETYy = T" @ L RHom, (T, A)
=~ RHom, (T",T")
~ B.

By Proposition 15.5 2, we have an isomorphism
RHom', (7", A) 2 RHom, (T", RHomz(T",T"))

>~ RHom’z(T", RHom' (T",T"))
=~ RHom}(T", B).

Then we have
AT & BTy = RHom (T, B) @ 5T

>~ RHomz(T",T)
>~ A.

O

Theorem 17.15. Let (A;, B;) be derived equivalent k-algebras, T; two-sided tilting
complezes in DP(Mod B{*®y, A;) and their inverses T)'* (i = 0,1,2). Then we have
the following commutative diagrams.
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_&L _
D" (Mod ASP@ A1) x D*(Mod A @ Ay) ——2— D"(Mod ASP®), A,)

FoxFll lFQ

_oL _
D" (Mod B$*®y, By ) x DP(Mod B{P@y By) ——— D"(Mod By @y Bs).
2.

RHom'_(—,—
DP(Mod A%y As) x D*(Mod A% @4 Az) —22 "7 b (Mod A0y Ay )

leFgl ng

RHoms_ (—,—)
D (Mod B @3, B2) x D"(Mod BSP®yBy) —— 22" D"(Mod B* @y By).
Here Fy = Ty@% —@h TV, Fy =Tj 0% —&K Ty, F = Tyok —&k Ty
Proof. 1. We have isomorphisms
(T &%, -4, © 5, (11 04, — ©4,15")
= (T 0%, -) 0% (M 0FT) 0k (- 05,1
= (0%, ) @5 A) @ %, (-9 5,5")
> (L ®%,~) @4 (- ©45,1").
2. Let X* € Mod A @Az, Y € Mod A{P®y, As, Z* € Mod A ®) As. Since we
have an adjoint isomorphism

HOmD(MOd A8p®kA2)(X. ® £1Y.7 Z.) = HOmD(MOd A8p®kAl)(X.’ _R,HOHl:42 (Y., Z‘)),
we get the assertion by 1. |
17.3. The Case of Finite Dimensional k-algebras. Throughout this subsec-

tion, we assume k is a field, and all algebra are finite dimensional k-algebras. We
denote Dy, = Homy(—, k).

Definition 17.16 (Nakayama Functor). A triangle auto-equivalence vy = — ®
LD A : DP(mod A) — DP(mod A) is called a Nakayama functor.

Proposition 17.17. Let (A, B) be derived equivalent k-algebras, T* a two-sided

tilting complex in D*(Mod B°P®yA) and its inverse TV. Then we have a commu-
tative diagram

D™ (Mod A) —2— D~ (Mod A)

Fl lF
D~ (Mod B) —Z— D~ (Mod B),

where F' is a standard equivalence.

Proof. By Proposition 17.2, the standard equivalence G : DP(Mod AP®,A) —
D’ (Mod B°’®y, B) sends A to B.

By the case of A1 = A0p®k-A, B1 = BOP(X)k-B and AQ = A2 = BQ = B2 =k in
Theorem 17.15 2, we have GD,A = D, B.
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By the case of Ay = Ay = A, By = By = B and Ag = By = k in Theorem 17.15
1, we have F'vy = vgF. O

Corollary 17.18. Let A be a finite dimensional k-algebra which is derived equiv-
alent to B. If A is a symmetric algebra, then B is a symmetric algebra.

Lemma 17.19. Let A, B be finite dimensional self-injective k-algebras, oPp is
A°PRy. B-projective, gV is A-projective and B-projective. The following hold.
1. BP®,A is a self-injective algebra.
Hom 4 (P, A) is B°P®y A-projective.
Hom4 (V, A) is A-projective and B-projective.
APRpBV4 is A°PRy A-projective.
X®a Pp is B-projective for any X € Mod A.
Y®pVa is A-projective for any Y € Proj B.

AR i

Proof. By Propositions 15.1, 15.3. |

Proposition 17.20. Let A and B be derived equivalent self-injective k-algebras.
t
Then K(mod A) = K(mod B), and there are bimodules sMp and pN 4 such that
—R4M :modA — modB and— QN : modB — mod A

induce an equivalence modA = modB.

Proof. Let T" be a two-sided tilting complex in Db(Mod B°P®iA) and TV its in-
verse. By taking a B°P ®,A-projective resolution of T, and its shifting and trun-
cation, we may assume 7" is isomorphic to

S .8 gt 580

where S are BP®y A-projective (—n < i < 0), and S™" is A-projective and B-
projective. Then TV* = Hom(S", A) in Db(Mod A® R B), and we have

S* @4 Homa(S,A) =B in K°(Mod B*®,B),
Homa(S", A) @5 "= A in  K°(Mod AP ®,A).

t

These imply that K(mod A) = K(mod B). Let M = Q"(Homy4(S™", A)), the nth

syzygy as as a BP®iA-module and N = Q7"(S™"), the —nth syzygy as as a

A°P®j, B-module. Since Hom4 (S™™, A) is A-projective and B-projective, M is A-

projective and B-projective. Similarly, N is A-projective and B-projective. Then
—R4M :modA — modB and — N : mod B — mod A

induce triangle functors between modA and modB. By Lemma 17.19, all terms
but the term Hom4(S™™, A)®45~™ of a double complex Hom,4(S*, A) ®p S are
A°PRy, A-projective. Therefore A is a direct summand of @pzq Hom 4 (S?, A)®pS?
as a A°P®, A-module. For each X € mod A, we have isomorphisms in mod A
X2 X®R4A

>~ X®4Homy(S™", A)@pS™"

= u)_n(X@AM@BS_n)

> WwTM(X®aM®pN)

ZX®®s4M®pN,
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where w is the loop space functor on modA. Similarly, for each Y € mod B, we
have an isomorphism in modB

YZ2YRpN®RsM.
O

Proposition 17.21. Let A and B be indecomposable symmetric k-algebras, X* a
biperfect complez in D (Mod BP®, A), and XV* = Homj (X, k). f X*®LkXV-~ B
in DP(Mod B® ®,, B), then X* is a two-sided tilting complex.

Proof. Since we have isomorphisms

XY = RHom', (X", A)
=~ RHomj (X", B),

by Proposition 15.5, lemma 17.12, F = — ® 5X* : D"(mod B) — D"(mod A) and

FV = —®LXV : D’(mod A) — DP(mod B) are both left and right adjoint to
one another. By adjunction arrows of adjoint pairs (F, FY), (F,F), we have

morphisms a : 4 — XV* @ 5X* 3: XV @ EX- — A. By Proposition 1.17, we
have a split monomorphism oF : X* — X' ® ’;;XV' ® gX', a split epimorphism
BF : X* @ 5XV- @ 5X" — X-. Since D"(mod B°P®; A) is a Krull-Schmidt cate-

gory by Corollary 11.19, X* ® LXV- =~ B implies that oF, BF are isomorphisms in
Db(mod BP®;A). If fa is not an isomorphism, then this contradicts (Sa)F is an
isomorphism. Therefore A is a direct summand of XV*® L X+ in D" (mod A°P®y, A).
Since XV @ LX- @ EXV- @ EX+ =~ XV* @ EX* we have A = XV* @ EX- in
DP(mod APy A). 0

Proposition 17.22. Let A be a symmetric k-algebra which has no simple projec-

-1
tive A-module, e an idempotent of A, and P : P! 4, po = Ae@reA £ A,
where p is the multiplication morphism. Then P+ is a tilting complex. Moreover,
AP is a two-sided tilting complez if and only if dimy eAe = 2.

Proof. Since Dy P = (DA — Dy (Ae®peA)) = (A — Ae®peA), Hom'y (Py, Py) =
P+ & 4Dy, P has the form
Ae®peA —_— A

! !

Ae®reAe®@reA —— Ae@ieA,

where the left vertical arrow is monic and the bottom horizontal arrow is epic.
Then H'(Hom (P, Py)) = 0 for ¢ # 0. Since

P = (eAe®reA — eA)D((1 — e)Ae®reA — (1 —e)A)
and dimg ede =n > 2,

P = (eA™! - 0)a((1 —e)AexreA — (1 —e)A),
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and then P generates Kb(proj A4). By the above diagram, we have an isomorphism
in mod A°P®; A

AeRreAD HO(P' R Dy P )®Ae®reA =2 Ae®peAe®peADA.
By the Krull-Schmidt Theorem, we have

HY(P* @4 Dy P') = Ad(Ae@peA)" 2.

18. COTILTING BIMODULE COMPLEXES

Throughout this section, unless otherwise stated, k is a commutative ring, A, B,
C' are k-algebras which are k-projective modules. See Propositions 15.7, 15.8.

Definition 18.1 (Cotilting Bimodule Complexes). Let A be a right coherent k-
algebra and B a left coherent k-algebra. A complex pUs; € D°(Mod BP®jA) is
called a cotilting B-A-bimodule complex provided that it satisfies

1. RespU* € D?(Mod A)gq and Resper U+ € D2 (Mod B )gq.
HomD(Mod A)(U', U[l]) =0 for all ¢ 75 0.
HomD(Mod Bop)(U', U [l]) =0 for all ¢ # 0.
the left multiplication morphism B — Endpmod 4)(U*) is a ring isomorphism.
the right multiplication morphism A — Endp(moed ger)(U*)°P is a 1ing isomor-
phism.

CUR LN

In case of B = A, we will call a cotilting A-A-bimodule complex a dualizing
A-bimodule complez.

Proposition 18.2. Let A be a right coherent k-algebra and B a left coherent k-
algebra, and gUsy € Db(Mod B®®A) a cotilting B-A-bimodule complex. Then

R* Hom’,(—,U") : D}(Mod A) — D (Mod B)
and
R Homy(—, U*) : Df(Mod B°?) — D (Mod A)
induce the duality, where (x,T) = (nothing, nothing), (+, =), (—,+), (b, b).
Proof. Since Res U € DE(Mod A)ga, by Proposition 10.21 R*Hom'(—,U") is
way-out in both directions. Since R* Hom’y(A,U*) = ResperU* € D! (Mod B ),we
have R* Hom’y(—,U*) : D(Mod A) — Df(Mod B°P) by Proposition 12.12. Simi-
larly we have R' Hom’;(—, U*) : D} (Mod B®) — D} (Mod A). Since
(R* Homy (—,U"), R Hom (—, U"))
is a right adjoint pair, we have adjunction arrows
n: ]-Dz(Mod A) — _R,Jr Hom}g(—, U) o R* Hom'A(—, U)
0 : 1p: (Mod pory — R* Homy (—,U") o R Homg (—, U").
It is not hard that we have a commutative diagram in D (Mod A°P®x A)

A " R Homy, (R* Hom', (4, UY), U*)

H g

4 2 R Homy (U, U),
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Then 7(A) is an isomorphism. By Proposition 12.11, ) is an isomorphism. Similarly,
f is an isomorphism. O

Lemma 18.3 (Piled Resolutions Lemma). Let A be an abelian category satisfying
the condition Ab4* with enough injectives, and let C* be a doub]e complex with
CP1=0 (p<0orq<0), C7 — IV quasi-isomorphisms with I'? : 0 — I~%7 —

I=st5i — . € Kt (InjA) for all i. Then, there is a quasi-isomorphism from
A
Tot C = TotC™ to a complex J* of the following form in KT (Inj.A)
Doyl if 1>

Proof. For a double complex C*, we have a sequence of morphisms {Tot TISI"C" —
Tot Tgn_lC"}. By induction on n > 0, we construct complexes V,; and morphisms
of triangles in K*(A)

TOtTgnC" - TotTgn_lC" —— C"[l-n] —— TOtTgnC"[l]

! ! ! |

Vv — v

n o1 —— Ill=n] ——  V;[1]

where all vertical arrows are quasi-isomorphisms. If n = 0, then we take Vg = I*.
Let n > 0. Since V;;_; — Tot7, ,C* and C*"[1 —n] — I'*[1 — n] are quasi-
isomorphisms, we choose a morphism V:_; =% I4[1 — n] in C(.A) such that

Tot Tgn_lC" — C"[1 —n]

! !

|/ ] )
is commutative in K (A4). We take V;; = M*(g,—1)[—1] in C(A). Then V;; — V;:_, is
a term-split epimorphism and have the above morphism of triangles. By Proposition
11.7, we have isomorphisms in D (A)

Tot C = T?)tC’"
2 lim Tot 72,,C*
= hlim Tot 7%, C*
~ Llim V;
= lin;‘/,;.
By the construction of V,;, we have the required complex. O

Theorem 18.4. Let A be a right noetherian k-algebra and B a left coherent k-
algebra, and gUy € Db(Mod B®®iA) a cotilting B-A-bimodule complex. If I* €
K™ (Inj A) is quasi-isomorphic to Res U in K™ (Mod A), then I* contains all inde-
composable injective A-modules.

Proof. According to Proposition 18.2 and Example 10.14, for any X+ € DE(Mod A),
there exists P+ € K™ (proj B°P) such that
Hom} (P,U") 2 RHomz (P, U")
=~ X"
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For any P, it is easy to see Homp(P?, U*) € addUy. Then Homp(P*,U*) € add I".
By piled resolutions lemma, we have a quasi-isomorphism X* — J* in K*(Mod A)
with all J* € Add ([[;c,1%). Since A is noetherian, J* is A-injective. We take
X+ = A/p where p is any right ideal of A. Since J* in KT (Mod A), it is easy to see
that we have a monomorphism A/p — J°. Hence the injective envelope E(A/p) is
a direct summand of J°. O

Corollary 18.5 (Like-Corollary). Let A be a right noetherian and left coherent
ring with inj dim 4 A,inj dim A4 < oo. Then any injective resolution of a right
A-module A 4 contains all indecomposable injective A-modules.

Proof. By the same technique in Proposition 18.2, R" Hom 4(—, 4) : Db(mod A) —
D®(mod A°?) and R" Homy4(—, A) : D" (mod A°?) — D”(mod A) induce a duality.
By the above proof, we get the statement. O
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[BBD]
[BN]

[CE]
[CW]

[Ha]
(HS]
[Ho]
[HK]
[Kel]
[Ke2]
(KV]

[ML]
[Mil]

[Mi2]
[Mi3]
[Mid4]
[Po]
(Qu]
[RD]
[Rd1]
[Rd2]
[Rd3]
[R1]
[RZ]
[We]
[Sp]
[Ye]

[Ve]
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bifunctorial morphism, 4

biperfect complex, 81

bounded above complex, 24
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bounded complex, 24 Nakayama functor, 84
null object, 5

mapping cone, 25

monomorphism, 2

morphism of complexes, 24
morphism of double complexes, 57
multiplicative system, 29

category, 1

cochain complex, 24 opposite category, 2

cofinal subcategory, 31

cohomology, 28 perfect complex, 74

colimit, 3 pre-Krull-Sch midt category, 11
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colocalization exact, 38 product, 4

compatible with the triangulation, 33 product category, 4

complex, 24 proper epimorphism, 59
contravariant cohomological functor, 15 proper exact, 59
contravariant functor, 2 proper injective complex, 59
coproduct, 4 proper monomorphism, 59
cotilting bimodule complex, 87 proper projective complex, 59

covariant cohomological functor, 15

covariant functor, 2 quasi-isomorphism, 40

quotient category, 31
dense, 3 quotient functor, 31
derived equivalent, 77 quotientizing subcategory, 52
distinguished triangle, 14
double complex, 56
dualizing bimodule complex, 87

r-tuple complex, 57

right adjoint, 4

right adjoint pair, 4

epimorphism, 2 right derived functor, 52

exact, 7 right derived functor of a bi-0-functor, 63
exact category, 19

exact functor, 14 saturated multiplicative system, 30

section functor, 38

faithful, 3 split epimorphism, 2
finite injective dimension, 45 split monomorphism, 2
Frobenius category, 20 stable t-structure, 39
full, 3 stable category, 12
functorial isomorphism, 3 stalk complex, 24
functorial morphism, 3 standard equivalence, 81
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standard triangle, 21

term-split epimorphism, 25
term-split monomorphism, 25
terminal object, 5

thick abelian full subcategory, 40
tilting complex, 76

total complexes, 58

translation, 14

triangle equivalent, 14
triangulated category, 14
two-sided tilting complex, 81

way-out in both directions, 55
way-out left, 55
way-out right, 55
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