t-STRUCTURES, TORSION THEORIES AND DG ALGEBRAS

JUN-ICHI MIYACHI

In this note, for a ring $A \operatorname{Mod} A$ (resp., $\operatorname{mod} A$) is the category of right A-modules (resp., finitely generated right A-modules), and Proj A (resp., proj A) the category of projective right A-modules (resp., finitely generated projective right A-modules).

1. *t*-structures

We recall the notion of t-structures which was introduced by Beilinson, Bernstein and Deligne. In this section, \mathcal{T} is a triangulated category, \mathcal{C} is a full subcategory of \mathcal{T} satisfying

$$\operatorname{Hom}_{\mathcal{T}}(\mathcal{C}, \mathcal{C}[i]) = 0 \quad (i < 0).$$

Proposition 1.1. For a morphism $f: X \to Y$ in \mathcal{C} , suppose that there are $N, C \in$ \mathcal{C} such that

where all vertical and horizontal sequences are distinguished triangles. Then we have ker $f = \alpha[-1]$, Cok $f = \beta$ in \mathcal{C} .

Definition 1.2. A morphism $f: X \to Y$ in C is called C-admissible if there exist $N, C \in \mathcal{C}$ satisfying Proposition 1.1. A sequence $X \to Y \to Z$ in \mathcal{C} is called an admissible short exact sequence if $X \to Y \to Z \to X[1]$ is a distinguish triangle for some $Z \to X[1]$.

Proposition 1.3. Suppose that C is stable under finite coproducts. Then the following are equivalent.

- 1. C is abelian, and all short exact sequences are admissible.
- 2. All morphisms in C are C-admissible.

Definition 1.4. A full subcategory C of T is called an admissible abelian category if C satisfy the equivalent conditions in Proposition 1.3.

Definition 1.5. Let \mathcal{T} be a triangulated category. For full subcategories $\mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0}, (\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is called a t-structure on \mathcal{T} provided that

- (i) $\operatorname{Hom}_{\mathcal{T}}(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 1}) = 0;$ (ii) $\mathcal{T}^{\leq 0} \subset \mathcal{T}^{\leq 1}$ and $\mathcal{T}^{\geq 0} \supset \mathcal{T}^{\geq 1};$

This is a seminar note of which I gave a lecture at Osaka City University in March 2001.

(iii) for any $X \in \mathcal{T}$, there exists a distinguished triangle

 $X' \to X \to X'' \to$

with $X' \in \mathcal{T}^{\leq 0}$ and $X'' \in \mathcal{T}^{\geq 1}$.

where $\mathcal{T}^{\leq n} = \mathcal{T}^{\leq 0}[-n]$ and $\mathcal{T}^{\geq n} = \mathcal{T}^{\geq 0}[-n]$.

The core of this t-structure is $\mathcal{C} = \mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$.

Proposition 1.6. For $n \in \mathbb{Z}$, the following hold.

- 1. The inclusion $\mathcal{T}^{\leq n} \to \mathcal{T}$ has a right adjoint $\sigma_{\leq n} : \mathcal{T} \to \mathcal{T}^{\leq n}$.
- 2. The inclusion $\mathcal{T}^{\geq n} \to \mathcal{T}$ has a left adjoint $\sigma_{>n} : \mathcal{T} \to \mathcal{T}^{\geq n}$.
- 3. For any $X \in \mathcal{T}$, there exists a unique $d \in \operatorname{Hom}_{\mathcal{T}}(\sigma_{\geq 1}X, \sigma_{\leq 0}X[1])$ such that

$$\sigma_{\leq 0} X \to X \to \sigma_{\geq 1} X \xrightarrow{d} \sigma_{\leq 0} X[1]$$

is a distinguished triangle.

4. Let $A \to X \to B \to A[1]$ be a distinguished triangle with $A \in \mathcal{T}^{\leq 0}$, $B \in \mathcal{T}^{\geq 1}$. Then this triangle is isomorphic to $\sigma_{\leq 0}X \to X \to \sigma_{\geq 1}X \xrightarrow{d} \sigma_{\leq 0}X[1]$.

Remark 1.7. For $X \in \mathcal{T}$, the following hold.

- 1. $\sigma_{\geq n}X = O$ iff $X \in \mathcal{T}^{\leq n-1}$. 2. $\sigma_{\leq n}X = O$ iff $X \in \mathcal{T}^{\geq n+1}$.

Proposition 1.8. For $a \leq b, X \in \mathcal{T}$, there is an isomorphism $\sigma_{>a}\sigma_{<b}X \xrightarrow{\sim}$ $\sigma_{\leq b}\sigma_{\geq a}X$ such that

is commutative.

Theorem 1.9. The core $\mathcal{C} = \mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$ is an admissible abelian category which is stable under extensions, and $H^0 = \sigma_{\geq 0} \sigma_{\leq 0} : \mathcal{T} \to \mathcal{C}$ is a cohomological functor.

Definition 1.10. A t-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ on \mathcal{T} is called non-degenerate provided that $\bigcap_{n \in \mathbb{Z}} \mathcal{T}^{\leq n} = \bigcap_{n \in \mathbb{Z}} \mathcal{T}^{\geq n} = \{0\}.$

Proposition 1.11. Let $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ be a non-degenerate t-structure. For $X \in \mathcal{T}$, the following hold.

1. $\operatorname{H}^{i} X = O$ for any n iff X = O.

2. $\operatorname{H}^{i} X = O$ for any i > n (resp., i < n) iff $X \in \mathcal{T}^{\leq n}$ (resp., $X \in \mathcal{T}^{\geq n}$). Here $\operatorname{H}^{i} X = \operatorname{H}^{0}(X[i]).$

2. t-structures Induced by Compact Objects

A triangulated category \mathcal{T} is said to contain coproducts if coproducts of objects indexed by any set exist in \mathcal{T} . An object C of \mathcal{T} is called compact if $\operatorname{Hom}_{\mathcal{T}}(C, -)$ commutes with coproducts. Furthermore, a collection \mathcal{S} of compact objects of \mathcal{T} is called a generating set provided that X = 0 whenever $\operatorname{Hom}_{\mathcal{T}}(\mathcal{S}, X) = 0$, and that \mathcal{S} is stable under suspensions. In this case, \mathcal{T} is called compactly generated (see [Ne] for details). For an object $C \in \mathcal{T}$ and an integer n, we denote by $\mathcal{T}^{\geq n}(C)$ (resp.,

 $\mathcal{T}^{\leq n}(C)$) the full subcategory of \mathcal{T} consisting of $X \in \mathcal{T}$ with $\operatorname{Hom}_{\mathcal{T}}(C, X[i]) = 0$ for i < n (resp., i > n), and set $\mathcal{T}^{0}(C) = \mathcal{T}^{\leq 0}(C) \cap \mathcal{T}^{\geq 0}(C)$.

For an abelian category \mathcal{A} , we denote by $\mathsf{C}(\mathcal{A})$ the category of complexes of \mathcal{A} , and denote by $\mathsf{D}(\mathcal{A})$ (resp., $\mathsf{D}^+(\mathcal{A})$, $\mathsf{D}^-(\mathcal{A})$, $\mathsf{D}^{\mathrm{b}}(\mathcal{A})$) the derived category of complexes of \mathcal{A} (resp., complexes of \mathcal{A} with bounded below homologies, complexes of \mathcal{A} with bounded above homologies, complexes of \mathcal{A} with bounded homologies). For an additive category \mathcal{B} , we denote by $\mathsf{K}(\mathcal{B})$ (resp., $\mathsf{K}^-(\mathcal{B})$, $\mathsf{K}^{\mathrm{b}}(\mathcal{B})$) the homotopy category of complexes of \mathcal{B} (resp., bounded above complexes of \mathcal{B} , bounded complexes of \mathcal{B}) (see [RD] for details).

Proposition 2.1. Let \mathcal{T} be a triangulated category which contains coproducts, C a compact object satisfying $\operatorname{Hom}_{\mathcal{T}}(C, C[n]) = 0$ for n > 0. Then for any $r \in \mathbb{Z}$ and any object $X \in \mathcal{T}$, there exist an object $X^{\geq r} \in \mathcal{T}^{\geq r}(C)$ and a morphism $\alpha^{\geq r} : X \to X^{\geq r}$ in \mathcal{T} such that

- (i) for any $i \ge r$, $\operatorname{Hom}_{\mathcal{T}}(C, \alpha^{\ge r}[i])$ is an isomorphism,
- (ii) for every object $Y \in \mathcal{T}^{\geq r}(C)$, $\operatorname{Hom}_{\mathcal{T}}(\alpha^{\geq r}, Y)$ is an isomorphism.

Theorem 2.2. Let \mathcal{T} be a triangulated category which contains coproducts, C a compact object satisfying $\operatorname{Hom}_{\mathcal{T}}(C, C[n]) = 0$ for n > 0, and $B = \operatorname{End}_{\mathcal{T}}(C)$. If $\{C[i] \mid i \in \mathbb{Z}\}$ is a generating set, then the following hold.

- (1) $(\mathcal{T}^{\leq 0}(C), \mathcal{T}^{\geq 0}(C))$ is a non-degenerate t-structure on \mathcal{T} .
- (2) $\mathcal{T}^0(C)$ is admissible abelian.

(3) The functor

$$\operatorname{Hom}_{\mathcal{T}}(C,-): \mathcal{T}^0(C) \to \operatorname{\mathsf{Mod}} B$$

is an equivalence.

3. TORSION THEORIES FOR ABELIAN CATEGORIES

Throughout this section, we fix the following notation. Let \mathcal{A} be an abelian category satisfying the condition Ab4 (i.e. direct sums of exact sequences are exact), and let $d_P^{-1}: P^{-1} \to P^0$ be a morphism in \mathcal{A} with the P^i being small projective objects of \mathcal{A} , and denote by P^{\bullet} the mapping cone of d_P^{-1} . We set $\mathcal{C}(P^{\bullet}) = \mathsf{D}(\mathcal{A})^0(P^{\bullet})$, $B = \operatorname{End}_{\mathsf{D}(\mathcal{A})}(P^{\bullet})$, and define a pair of full subcategories of \mathcal{A}

$$\mathcal{X}(P^{\bullet}) = \{ X \in \mathcal{A} \mid \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, X[1]) = 0 \}, \\ \mathcal{Y}(P^{\bullet}) = \{ X \in \mathcal{A} \mid \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, X) = 0 \}.$$

For any $X \in \mathcal{A}$, we define a subobject of X

$$\tau(X) = \sum_{f \in \operatorname{Hom}_{\mathcal{A}}(\operatorname{H}^{0}(P^{\cdot}), X)} \operatorname{Im} f$$

and an exact sequence in \mathcal{A}

$$(e_X): 0 \to \tau(X) \xrightarrow{j_X} X \to \pi(X) \to 0.$$

Remark 3.1. It is easy to see that P^{\bullet} is a compact object of $D(\mathcal{A})$, and we have $\mathcal{X}(P^{\bullet}) = D(\mathcal{A})^{\leq 0}(P^{\bullet}) \cap \mathcal{A}$ and $\mathcal{Y}(P^{\bullet}) = D(\mathcal{A})^{\geq 1}(P^{\bullet}) \cap \mathcal{A}$.

Lemma 3.2. For any $X^{\boldsymbol{\cdot}} \in \mathsf{D}(\mathcal{A})$ and $n \in \mathbb{Z}$, we have a functorial exact sequence

$$0 \to \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, \operatorname{H}^{n-1}(X^{\bullet})[1]) \to \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, X^{\bullet}[n]) \to \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, \operatorname{H}^{n}(X^{\bullet})) \to 0.$$

Moreover, the above short exact sequence commutes with coproducts.

JUN-ICHI MIYACHI

Definition 3.3. A pair $(\mathcal{X}, \mathcal{Y})$ of full subcategories \mathcal{X}, \mathcal{Y} in an abelian category \mathcal{A} is called a torsion theory for \mathcal{A} provided that the following conditions are satisfied (see e.g. [Di] for details):

- (i) $\mathcal{X} \cap \mathcal{Y} = \{0\};$
- (ii) \mathcal{X} is closed under factor objects;
- (iii) \mathcal{Y} is closed under subobjects;
- (iv) for any object X of A, there exists an exact sequence $0 \to X' \to X \to X'' \to 0$ in A with $X' \in \mathcal{X}$ and $X'' \in \mathcal{Y}$.

Remark 3.4. Let \mathcal{A} be an abelian category and $(\mathcal{X}, \mathcal{Y})$ a torsion theory for \mathcal{A} . Then for any $Z \in \mathcal{A}$, the following hold.

- (1) $Z \in \mathcal{X}$ if and only if $\operatorname{Hom}_{\mathcal{A}}(Z, \mathcal{Y}) = 0$.
- (2) $Z \in \mathcal{Y}$ if and only if $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, Z) = 0$.

Theorem 3.5. The following are equivalent for a complex $P^{\bullet}: P^{-1} \xrightarrow{d_P^{-1}} P^0$ with the P^i being small projective objects of \mathcal{A} .

- (1) $\{P^{\bullet}[i] \mid i \in \mathbb{Z}\}$ is a generating set for $\mathsf{D}(\mathcal{A})$ and $\operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, P^{\bullet}[i]) = 0$ for all i > 0.
- (2) $\mathcal{X}(P^{\bullet}) \cap \mathcal{Y}(P^{\bullet}) = \{0\} \text{ and } \mathrm{H}^{0}(P^{\bullet}) \in \mathcal{X}(P^{\bullet}).$
- (3) $\mathcal{X}(P^{\bullet}) \cap \mathcal{Y}(P^{\bullet}) = \{0\}$ and $\tau(X) \in \mathcal{X}(P^{\bullet}), \pi(X) \in \mathcal{Y}(P^{\bullet})$ for all $X \in \mathcal{A}$.
- (4) $(\mathcal{X}(P^{\bullet}), \mathcal{Y}(P^{\bullet}))$ is a torsion theory for \mathcal{A} .

Lemma 3.6. Assume $\mathcal{X}(P^{\bullet}) \cap \mathcal{Y}(P^{\bullet}) = \{0\}$. Then for any $X^{\bullet} \in \mathsf{D}(\mathcal{A})$, the following are equivalent.

- (1) $X^{\bullet} \in \mathcal{C}(P^{\bullet}).$
- (2) $\operatorname{H}^{n}(X^{\cdot}) = 0$ for n > 0 and n < -1, $\operatorname{H}^{0}(X^{\cdot}) \in \mathcal{X}(P^{\cdot})$ and $\operatorname{H}^{-1}(X^{\cdot}) \in \mathcal{Y}(P^{\cdot})$.

Remark 3.7. Let \mathcal{A} be an abelian category and \mathcal{X}, \mathcal{Y} full subcategories of \mathcal{A} . Then the pair $(\mathcal{X}, \mathcal{Y})$ is a torsion theory for \mathcal{A} if and only if the following two conditions are satisfied:

- (i) $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, \mathcal{Y}) = 0;$
- (ii) for any object X in A, there exists an exact sequence $0 \to X' \to X \to X'' \to 0$ in A with $X' \in \mathcal{X}$ and $X'' \in \mathcal{Y}$.

Theorem 3.8. Let P^{\bullet} be a complex $P^{-1} \xrightarrow{d_P^{-1}} P^0$ with the P^i being small projective objects of \mathcal{A} . Assume $\mathcal{X}(P^{\bullet}) \cap \mathcal{Y}(P^{\bullet}) = \{0\}$ and $\mathrm{H}^0(P^{\bullet}) \in \mathcal{X}(P^{\bullet})$. Then the following hold.

- (1) $\mathcal{C}(P^{\bullet})$ is admissible abelian.
- (2) The functor

$$\operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, -) : \mathcal{C}(P^{\bullet}) \to \operatorname{\mathsf{Mod}} B$$

is an equivalence.

(3) $(\mathcal{Y}(P^{\bullet})[1], \mathcal{X}(P^{\bullet}))$ is a torsion theory for $\mathcal{C}(P^{\bullet})$.

Proposition 3.9. Assume P satisfies the conditions

- (i) $\{P \cdot [i] \mid i \in \mathbb{Z}\}$ is a generating set for $\mathsf{D}(\mathcal{A})$,
- (ii) $\operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(P^{\bullet}, P^{\bullet}[i]) = 0$ for $i \neq 0$.

If \mathcal{A} has either enough projectives or enough injectives, then we have an equivalence of triangulated categories

$$\mathsf{D}^{\mathsf{b}}(\mathcal{A}) \cong \mathsf{D}^{\mathsf{b}}(\mathsf{Mod}\,B).$$

Example 3.10 (cf. [HK]). Let A be a finite dimensional algebra over a field k given by a quiver

with relations $\beta \alpha = \gamma \beta = \delta \gamma = \alpha \delta = 0$. For each vertex *i*, we denote by S(i), P(i) the corresponding simple and indecomposable projective left A-modules, respectively. Define a complex P^{\bullet} as the mapping cone of the homomorphism

$$d_P^{-1} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & 0 & g & 0 \end{bmatrix} : P(2)^2 \oplus P(4)^2 \to P(1) \oplus P(3),$$

where f and g denote the right multiplications of α and γ , respectively. Then P[•] is not a tilting complex. However, P[•] satisfies the assumption of Theorem 3.8 and hence we have an equivalence of abelian categories

$$\operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,A)}(P^{\bullet},-): \mathcal{C}(P^{\bullet}) \to \mathsf{Mod}\,B,$$

where $B = \operatorname{End}_{\mathsf{D}(\mathsf{Mod}\,A)}(P^{\bullet})$ is a finite dimensional k-algebra given by a quiver

$$1 \leftarrow 2 \qquad 3 \leftarrow 4$$

There exist exact sequences in $\mathcal{C}(P^{\bullet})$ of the form

$$0 \to S(1) \to S(2)[1] \to P(1)[1] \to 0, \quad 0 \to S(3) \to S(4)[1] \to P(3)[1] \to 0,$$

and these objects and morphisms generate $\mathcal{C}(P^{\centerdot})$.

In the rest of this section, we deal with the case where R is a commutative artin ring, I is an injective envelope of an R-module $R/\operatorname{rad}(R)$ and A is a finitely generated R-module. We denote by mod A the full abelian subcategory of Mod A consisting of finitely generated modules. P^{\bullet} is also a complex $P^{-1} \xrightarrow{d_P^{-1}} P^0$ with the P^i being finitely generated projective A-modules. Note that $\operatorname{H}^n(P^{\bullet}), \operatorname{H}^n(\nu(P^{\bullet})) \in \operatorname{mod} A$ for all $n \in \mathbb{Z}$. We set

$$\mathcal{X}_c(P^{\bullet}) = \mathcal{X}(P^{\bullet}) \cap \operatorname{mod} A \quad \text{and} \quad \mathcal{Y}_c(P^{\bullet}) = \mathcal{Y}(P^{\bullet}) \cap \operatorname{mod} A.$$

Proposition 3.11. For any tilting complexes $P_1 : P_1^{-1} \to P_1^0$, $P_2 : P_2^{-1} \to P_2^0$ for A of term length two, the following are equivalent.

- (1) $(\mathcal{X}_c(P_1), \mathcal{Y}_c(P_1)) = (\mathcal{X}_c(P_2), \mathcal{Y}_c(P_2)).$
- (2) $\operatorname{add}(P_1) = \operatorname{add}(P_2)$ in $\operatorname{K}^{\operatorname{b}}(\operatorname{proj} A)$.

Proposition 3.12. The following are equivalent for a complex $P^{-1} \rightarrow P^0 \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$

- (1) P^{\bullet} is a tilting complex.
- (2) $\mathcal{X}_c(P^{\bullet}) \cap \mathcal{Y}_c(P^{\bullet}) = \{0\}, \operatorname{H}^0(P^{\bullet}) \in \mathcal{X}_c(P^{\bullet}) \text{ and } \operatorname{H}^{-1}(P^{\bullet}) \in \mathcal{Y}_c(P^{\bullet}).$
- (3) $(\mathcal{X}_c(P^{\bullet}), \mathcal{Y}_c(P^{\bullet}))$ is a torsion theory for mod A and $\mathrm{H}^{-1}(P^{\bullet}) \in \mathcal{Y}_c(P^{\bullet})$.
- (4) $(\mathcal{X}_c(P^{\bullet}), \mathcal{Y}_c(P^{\bullet}))$ is a torsion theory for mod A and $\mathcal{X}_c(P^{\bullet})$ is stable under $DA \otimes_A -$.
- (5) $(\mathcal{X}_c(P^{\bullet}), \mathcal{Y}_c(P^{\bullet}))$ is a torsion theory for mod A and $\mathcal{Y}_c(P^{\bullet})$ is stable under $\operatorname{Hom}_A(DA, -)$.

JUN-ICHI MIYACHI

Definition 3.13. Let \mathcal{A} be an abelian category and \mathcal{C} a full subcategory of \mathcal{A} closed under extensions. Then an object $X \in \mathcal{C}$ is called Ext-projective (resp., Extinjective) if $\operatorname{Ext}^{1}_{\mathcal{A}}(X, \mathcal{C}) = 0$ (resp., $\operatorname{Ext}^{1}_{\mathcal{A}}(\mathcal{C}, X) = 0$).

Proposition 3.14. Assume P is a tilting complex. Then the following hold.

- (1) $\mathrm{H}^{0}(P^{\bullet}) \in \mathcal{X}_{c}(P^{\bullet})$ is Ext-projective and generates $\mathcal{X}_{c}(P^{\bullet})$.
- (2) $\mathrm{H}^{-1}(\nu(P^{\bullet})) \in \mathcal{Y}_{c}(P^{\bullet})$ is Ext-injective and cogenerates $\mathcal{Y}_{c}(P^{\bullet})$.

Theorem 3.15. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for mod A such that \mathcal{X} contains an Ext-projective module X which generates \mathcal{X}, \mathcal{Y} contains an Ext-injective module Y which cogenerates \mathcal{Y} , and \mathcal{X} is stable under $DA \otimes_A -$. Let M_X be a minimal projective presentation of X and N_Y a minimal injective presentation of Y. Then

$$P^{\bullet} = M^{\bullet}_X \oplus \operatorname{Hom}_A^{\bullet}(DA, N^{\bullet}_Y)[1]$$

is a tilting complex such that $\mathcal{X} = \mathcal{X}_c(P^{\bullet})$ and $\mathcal{Y} = \mathcal{Y}_c(P^{\bullet})$.

Remark 3.16. Let

$$\mathfrak{S} = \{P^{\bullet} : P^{-1} \to P^{0} \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A) \mid P^{\bullet} \text{ is a tilting complex for } A\}$$

on which we define the equivalence relation $P_1 \sim P_2$ provided $\operatorname{add} P_1 = \operatorname{add} P_2$ in $\mathsf{K}^{\mathrm{b}}(\operatorname{proj} A)$, and let \mathfrak{T} be the collection of torsion theories $(\mathcal{X}, \mathcal{Y})$ for $\operatorname{mod} A$ such that \mathcal{X} contains an Ext-projective module X which generates \mathcal{X}, \mathcal{Y} contains an Ext-injective module Y which cogenerates \mathcal{Y} , and \mathcal{X} is stable under $DA \otimes_A -$. Set

$$\Phi(P^{\bullet}) = ((\mathcal{X}_c(P^{\bullet}), \mathcal{Y}_c(P^{\bullet})) \text{ for } P^{\bullet} \in \mathfrak{S}, \Psi((\mathcal{X}, \mathcal{Y})) = M^{\bullet}_{\mathcal{X}} \oplus \operatorname{Hom}_{\mathcal{A}}^{\bullet}(DA, N^{\bullet}_{\mathcal{Y}})[1] \text{ for } (\mathcal{X}, \mathcal{Y}) \in \mathfrak{T}.$$

Then, according to Propositions 3.11, 3.12, 3.14 and Theorem 3.15, Φ and Ψ induce a one to one correspondence between \mathfrak{S}/\sim and \mathfrak{T} .

4. Perverse t-structures Induced by Torsion Theories

We recall the notion of perverse *t*-structures which was introduced by [BBD] and was translated into the language of torsion theories by [VB], and show a relation to the results of Section 3. In this section, \mathcal{A} is an abelian category, $\mathcal{D} = \mathsf{D}^*(\mathcal{A})$, where * = nothing, +, - or b, and

$$\mathcal{D}^{\leq 0} := \{ X \in \mathcal{D} | \operatorname{H}^{i}(X) = O \text{ for } i > 0 \}$$
$$\mathcal{D}^{\geq 0} := \{ X \in \mathcal{D} | \operatorname{H}^{i}(X) = O \text{ for } i < 0 \}$$

Definition 4.1. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for \mathcal{A} . We set

$${}^{p}\mathcal{D}^{\leq 0} := \{ X \in \mathcal{D}^{\leq 0} | \operatorname{H}^{0}(X) \in \mathcal{X} \}$$
$${}^{p}\mathcal{D}^{\geq 0} := \{ X \in \mathcal{D}^{\geq -1} | \operatorname{H}^{-1}(X) \in \mathcal{Y} \}$$

Lemma 4.2. For $X \in \mathcal{D}^{\leq 0}$, we have a distinguished triangle

$$X_1^{\bullet} \to X^{\bullet} \to X_2^{\bullet} \to X_1^{\bullet}[1]$$

with $X_1 \in {}^p \mathcal{D}^{\leq 0}, X_2 \in {}^p \mathcal{D}^{\geq 1} \cap \mathcal{D}^0.$

Sketch. We have

Proposition 4.3. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for \mathcal{A} . Then $({}^{p}\mathcal{D}^{\leq 0}, {}^{p}\mathcal{D}^{\geq 0})$ is a non-degenerate t-structure in \mathcal{D} .

Proof. For $X^{\boldsymbol{\cdot}} \in {}^{p}\mathcal{D}^{\leq 0}, Y^{\boldsymbol{\cdot}} \in {}^{p}\mathcal{D}^{\geq 1}$, we have

$$\operatorname{Hom}_{\mathcal{D}}(X^{\boldsymbol{\cdot}}, Y^{\boldsymbol{\cdot}}) \cong \operatorname{Hom}_{\mathcal{D}}(\sigma_{\geq 0}X^{\boldsymbol{\cdot}}, \sigma_{\leq 0}Y^{\boldsymbol{\cdot}}) \\ \cong \operatorname{Hom}_{\mathcal{D}}(\operatorname{H}^{0}X^{\boldsymbol{\cdot}}, \operatorname{H}^{0}Y^{\boldsymbol{\cdot}}) \\ = 0$$

It is easy to see that ${}^{p}\mathcal{D}^{\leq 0} \subset {}^{p}\mathcal{D}^{\leq 1}$ and ${}^{p}\mathcal{D}^{\geq 1} \subset {}^{p}\mathcal{D}^{\geq 0}$. Let $Y \cdot \in \mathcal{D}$. By Lemma 4.2, we have a commutative diagram

where all vertical and horizontal sequences are distinguished triangles, and $Y_1 \in {}^p \mathcal{D}^{\leq 0}$, $Y_2 \in {}^p \mathcal{D}^{\geq 1} \cap \mathcal{D}^0$. Therefore $Z \in \mathcal{D}^{\geq 0}$ and $H^0 Z \cong H^0 Y_2 \in \mathcal{Y}$. Hence $Z \in {}^p \mathcal{D}^{\geq 1}$. Since ${}^p \mathcal{D}^{\leq 0} \subset \mathcal{D}^{\leq 0}$ and ${}^p \mathcal{D}^{\geq 0} \subset \mathcal{D}^{\geq -1}$, it is non-degenerate. \Box

Proposition 4.4. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for \mathcal{A} , ${}^{p}\mathcal{C} = {}^{p}\mathcal{D}^{\leq 0} \cap {}^{p}\mathcal{D}^{\geq 0}$. Then ${}^{p}\mathcal{C}$ is admissible abelian and $(\mathcal{Y}[1], \mathcal{X})$ is a torsion theory for ${}^{p}\mathcal{C}$.

Proof. It is easy to see that $\operatorname{Hom}_{\mathcal{D}}(\mathcal{Y}[1], \mathcal{X}) = \{O\}$. $X^{\bullet} \in {}^{p}\mathcal{C}$ iff $X^{\bullet} \cong Y^{\bullet} : Y^{-1} \to Y^{0}$ with $\operatorname{H}^{0} Y^{\bullet} \in \mathcal{X}$ and $\operatorname{H}^{-1} Y^{\bullet} \in \mathcal{Y}$. Then we have a distinguished triangle

$$\mathrm{H}^{-1} Y^{\bullet}[1] \to Y^{\bullet} \to \mathrm{H}^{0} Y^{\bullet} \to \mathrm{H}^{-1} Y^{\bullet}[2].$$

This means that we have an exact sequence in ${}^{p}\mathcal{C}$

 $O \to F \to Y^{{\scriptscriptstyle\bullet}} \to T \to O$

with $F \in \mathcal{Y}[1], T \in \mathcal{X}$.

Proposition 4.5. Let $P^{\boldsymbol{\cdot}}$ be a complex $P^{-1} \to P^0$ with the P^i being small projective objects of \mathcal{A} . Assume $\mathcal{X}(P^{\boldsymbol{\cdot}}) \cap \mathcal{Y}(P^{\boldsymbol{\cdot}}) = \{0\}$ and $\mathrm{H}^0(P^{\boldsymbol{\cdot}}) \in \mathcal{X}(P^{\boldsymbol{\cdot}})$. Then a perverse t-structure $({}^p\mathcal{D}^{\leq 0}, {}^p\mathcal{D}^{\geq 0})$ coincides with $(\mathcal{D}^{\leq 0}(P^{\boldsymbol{\cdot}}), \mathcal{D}^{\geq 0}(P^{\boldsymbol{\cdot}}))$.

Proof. By Lemma 3.2.

5. DG-Algebras and Derived Equivalences

Definition 5.1. A differential graded algebra (a DG algebra) B over a commutative ring k is a \mathbb{Z} -graded k-algebra $B = \prod_{n \in \mathbb{Z}} B^n$ endowed with a differential $d: B^n \to B^{n+1}$ ($n \in \mathbb{Z}$) such that

$$d(ab) = d(a)b + (-1)^p a d(b)$$

for $a \in B^p$.

A DG (right) B-module M is a \mathbb{Z} -graded B-module $M = \coprod_{n \in \mathbb{Z}} M^n$ endowed with a differential $d: M^n \to M^{n+1}$ ($n \in \mathbb{Z}$) such that

$$d(ma) = d(m)a + (-1)^p m d(a)$$

 $\begin{array}{l} \mbox{for } m \in M^p, \ a \in B. \\ \mbox{For } DG \ B\text{-module } M, N \ and \ n \in \mathbb{Z}, \\ \mbox{Hom}_{{\sf Gr} \ B}(M,N)^n = \ the \ set \ of \ graded \ B\text{-homomorphisms } of \ degree \ n \\ \mbox{Hom}_{{\sf Gr} \ B}(M,N) = \prod_{n \in \mathbb{Z}} \mbox{Hom}_{{\sf Gr} \ B}(M,N)^n \\ \mbox{Hom}_{{\sf Dif} \ B}(M,N) = \mbox{Hom}_{{\sf Gr} \ B}(M,N) \ endowed \ with \ the \ differential \\ \ \partial: \mbox{Hom}_{{\sf Gr} \ B}(M,N) = \mbox{Hom}_{{\sf Gr} \ B}(M,N) \ endowed \ with \ the \ differential \\ \ \partial: \mbox{Hom}_{{\sf Gr} \ B}(M,N)^n \to \mbox{Hom}_{{\sf Gr} \ B}(M,N)^{n+1} \\ \ (\partial((f^p)_{p \in \mathbb{Z}}) = (d_N^{p+n} \circ f^p + (-1)^{n+1} f^{p+1} \circ d_M^p)_{p \in \mathbb{Z}}) \\ \mbox{Hom}_{\mathcal{CB}}(M,N) = \mbox{Z}^0 \ \mbox{Hom}_{{\sf Dif} \ B}(M,N) \\ \mbox{Hom}_{\mathcal{HB}}(M,N) = \mbox{H}^0 \ \mbox{Hom}_{{\sf Dif} \ B}(M,N) \end{array}$

Definition 5.2. The suspension functor $S : CB \to CB$ is defined by

$$(SM)^{n} = M^{n+1}$$
$$m \cdot a = ma$$
$$d^{n}_{SM} = -d^{n+1}_{M}$$

for $M \in \mathcal{C}B$.

For $u: M \to N$ in CB, the mapping cone M(u) is defined by

$$\begin{split} \mathbf{M}^{n}(u) &= N^{n} \oplus M^{n+1} \\ \begin{bmatrix} n \\ m \end{bmatrix} \cdot a &= \begin{bmatrix} na \\ ma \end{bmatrix} \\ d^{n}_{\mathbf{M}(u)} &= \begin{bmatrix} d^{n}_{N} & u^{n+1} \\ 0 & -d^{n+1}_{M} \end{bmatrix} \end{split}$$

Proposition 5.3. The following hold.

- 1. Let S_B be the collection of exact sequences $O \to X \to Y \to Z \to O$ in CBsuch that $O \to X^n \to Y^n \to Z^n \to O$ is split exact in Mod k. Then (CB, S_B) is a Frobenius category.
- 2. Let \mathcal{T}_B be the collection of sextuples (X, Y, Z, i, v, w) which are isomorphic to standard triangles in $\mathcal{H}B$. Then $(\mathcal{H}B, \mathcal{T}_B)$ is a triangulated category.

Concerning the notion of Frobenius categories, see [Ha], [Mi] Section 5.

Definition 5.4. For a DG algebra B, $\operatorname{H}^{\bullet} B = \coprod_{n \in \mathbb{Z}} \operatorname{H}^{n} B$. For DG B-module M, $\operatorname{H}^{\bullet} M = \coprod_{n \in \mathbb{Z}} \operatorname{H}^{n} M$. Then we have the functor $\operatorname{H}^{\bullet} : \mathcal{H}A \to \operatorname{Gr} \operatorname{H}^{\bullet} B$. A morphism $f: M \to N$ is called quasi-isomorphism if $\operatorname{H}^{\bullet} f$ is isomorphism.

Let Σ be the collection of quasi-isomorphisms in $\mathcal{H}B$, then $\mathcal{D}B$ is $\Sigma^{-1}\mathcal{H}B$. In this case, the canonical functor $\mathcal{C}B \to \mathcal{H}B \to \mathcal{D}B$ commutes with coproducts.

Lemma 5.5. Let $(\mathcal{F}_i, \mathcal{S}_i)$ be Frobenius categories (i = 1, 2). If a functor $F : \mathcal{F}_1 \to \mathcal{F}_2$ satisfies that $F(\mathcal{S}_1) \subset \mathcal{S}_2$ and that FQ is \mathcal{S}_2 -projective for every \mathcal{S}_1 -projective object Q, then F induces ∂ -functor $\underline{F} : \underline{\mathcal{F}}_1 \to \underline{\mathcal{F}}_2$.

Definition 5.6. Let \mathcal{A} be an abelian category. For a complexes $X^{\cdot}, Y^{\cdot} \in C(\mathcal{A})$, we define the complex Hom'_{$\mathcal{A}}(X^{\cdot}, Y^{\cdot})$ by</sub>

$$\operatorname{Hom}_{\mathcal{A}}^{p}(X^{\boldsymbol{\cdot}},Y^{\boldsymbol{\cdot}}) = \prod_{n\in\mathbb{Z}}\operatorname{Hom}_{\mathcal{A}}(X^{n},Y^{n+p})$$
$$\operatorname{Hom}_{\mathcal{A}}^{\boldsymbol{\cdot}}(X^{\boldsymbol{\cdot}},Y^{\boldsymbol{\cdot}}) = \prod_{p\in\mathbb{Z}}\operatorname{Hom}_{\mathcal{A}}^{p}(X^{\boldsymbol{\cdot}},Y^{\boldsymbol{\cdot}})$$
$$d_{\operatorname{Hom}_{\mathcal{A}}^{p}(X^{\boldsymbol{\cdot}},Y^{\boldsymbol{\cdot}})}^{p}((f^{n})_{n\in\mathbb{Z}}) = (d_{Y}^{n+p}\circ f^{n} - (-1)^{p}f^{n+1}\circ d_{X}^{n})_{n\in\mathbb{Z}}$$

Proposition 5.7. Let \mathcal{A} be an AB4-category, \mathcal{A}' thick abelian subcategory which is closed under coproducts. Let $C^{\bullet} \in C_{\mathcal{A}'}(\mathcal{A})$, $B = \operatorname{End}_{C(\mathcal{A})}(C^{\bullet})$. Then the following hold.

- 1. We have the functor $\operatorname{Hom}_{\mathcal{A}}^{\bullet}(C^{\bullet}, -) : C_{\mathcal{A}'}(\mathcal{A}) \to \mathcal{C}B.$
- 2. Hom^{*}_{\mathcal{A}}(C^{\bullet} , -) induces the ∂ -functor Hom^{*}_{\mathcal{A}}(C^{\bullet} , -) : $\mathsf{K}_{\mathcal{A}'}(\mathcal{A}) \to \mathcal{H}B$.
- 3. If there is a triangulated full subcategory \mathcal{L} of $\mathsf{K}_{\mathcal{A}'}(\mathcal{A})$ such that
 - (a) every $X^{\bullet} \in \mathsf{K}_{\mathcal{A}'}(\mathcal{A})$ has a quasi-isomorphic to some complex in \mathcal{L} , (b) $\operatorname{Hom}_{\mathsf{K}(\mathcal{A})}(\mathsf{K}_{\mathcal{A}'}^{\phi}(\mathcal{A}), \mathcal{L}) = 0$,

then the ∂ -functor $\operatorname{Hom}_{\mathcal{A}}^{\bullet}(C^{\bullet}, -) : \mathsf{K}_{\mathcal{A}'}(\mathcal{A}) \to \mathcal{H}B$ induces the right derived functor $\mathbf{R}\operatorname{Hom}_{\mathcal{A}}^{\bullet}(C^{\bullet}, -) : \mathsf{D}_{\mathcal{A}'}(\mathcal{A}) \to \mathcal{D}B.$

Here $\mathsf{K}^{\phi}_{\mathcal{A}'}(\mathcal{A})$ is the full subcategory of $\mathsf{K}_{\mathcal{A}'}(\mathcal{A})$ consisting of acyclic complexes. In this case, we say that $\mathsf{K}_{\mathcal{A}'}(\mathcal{A})$ has a $\mathsf{K}^{\phi}_{\mathcal{A}'}(\mathcal{A})$ -Bousfield localization.

Lemma 5.8. Let \mathcal{A} be an AB4-category. Let $C^{\bullet} \in \mathsf{C}(\mathcal{A})$ which is a bounded complex of small projective objects, and $B = \operatorname{End}_{\mathsf{C}(\mathcal{A})}(C^{\bullet})$. Then the following hold.

- 1. $\mathbf{R} \operatorname{Hom}_{\mathcal{A}}^{\boldsymbol{\cdot}}(C^{\boldsymbol{\cdot}}, -)$ commutes with coproducts.
- 2. $\operatorname{Hom}_{\mathcal{D}(\mathcal{A})}(C^{\bullet}, X^{\bullet}) \cong \operatorname{Hom}_{\mathcal{D}B}(\mathbf{R} \operatorname{Hom}_{\mathcal{A}}^{\bullet}(C^{\bullet}, C^{\bullet}), \mathbf{R} \operatorname{Hom}_{\mathcal{A}}^{\bullet}(C^{\bullet}, X^{\bullet})).$

Lemma 5.9. Let \mathcal{A} be an AB_4 -category, \mathcal{A}' thick abelian subcategory which is closed under coproducts. Assume that $\mathsf{K}_{\mathcal{A}'}(\mathcal{A})$ has a $\mathsf{K}_{\mathcal{A}'}^{\phi}(\mathcal{A})$ -Bousfield localization. Let $C^{\bullet} \in \mathsf{C}_{\mathcal{A}'}(\mathcal{A})$ which is $\mathsf{K}_{\mathcal{A}'}^{\phi}(\mathcal{A})$ -local and is compact in $\mathsf{D}_{\mathcal{A}'}(\mathcal{A})$, and $B = \operatorname{End}_{\mathsf{C}(\mathcal{A})}(C^{\bullet})$. Then the following hold.

1. $\mathbf{R} \operatorname{Hom}_{\mathcal{A}}^{\cdot}(C^{\cdot}, -)$ commutes with coproducts.

2. Hom_{D(A)}(C[•], X[•]) \cong Hom_{DB}(\boldsymbol{R} Hom[•]_A(C[•], C[•]), \boldsymbol{R} Hom[•]_A(C[•], X[•])).

Proposition 5.10. Under the condition of Lemma 5.8 (resp., Lemma 5.9), if $\{C^{\cdot}[i]|i \in \mathbb{Z}\}$ is a generating set for $\mathsf{D}(\mathcal{A})$ (resp., $\mathsf{D}_{\mathcal{A}'}(\mathcal{A})$), then $\mathbf{R}\operatorname{Hom}_{\mathcal{A}}^{\cdot}(C^{\cdot}, -)$: $\mathsf{D}(\mathcal{A}) \to \mathcal{D}B$ (resp., $\mathbf{R}\operatorname{Hom}_{\mathcal{A}}^{\cdot}(C^{\cdot}, -)$: $\mathsf{D}_{\mathcal{A}'}(\mathcal{A}) \to \mathcal{D}B$) is an equivalence.

Proof. By Theorem 6.3 of Appendix.

Corollary 5.11. Let P^{\bullet} be a bounded complex of finitely generated projective modules over a ring A, $B = \operatorname{End}_{\mathsf{C}(\mathcal{A})}(C^{\bullet})$. If $\{P^{\bullet}[i]|i \in \mathbb{Z}\}$ is a generating set for $\mathsf{D}(\mathsf{Mod}\,A)$, then $\mathbf{R}\operatorname{Hom}_{\mathcal{A}}(P^{\bullet}, -) : \mathsf{D}(\mathsf{Mod}\,A) \to \mathcal{D}B$ is an equivalence.

Corollary 5.12. Let X be a quasi-compact separated scheme over an algebraically closed field. If a perfect complex $C^{\bullet} \in C^+_{qc}(\operatorname{Inj} X)$ satisfies that $\{C^{\bullet}[i]|i \in \mathbb{Z}\}$ is a generating set for $D_{qc}(X)$ (or $D(\operatorname{QCoh} X)$), then

$$\mathsf{D}(\mathsf{QCoh}\,X)\cong\mathcal{D}B$$

with $B = \operatorname{End}_{\mathsf{C}(\mathcal{A})}^{\boldsymbol{\cdot}}(C^{\boldsymbol{\cdot}}).$

Proof. According to [BN], $\mathsf{K}_{qc}(X)$ has a $\mathsf{K}_{qc}^{\phi}(X)$ -Bousfield localization, and $\mathsf{D}_{qc}(X) \cong \mathsf{D}(\mathsf{QCoh} X)$. By 5.10 we complete the proof.

Corollary 5.13. Let X be a projective scheme which embeds to \mathbf{P}_k^n . If a complex $C^{\bullet} \in \mathsf{C}^+_{qc}(\operatorname{Inj} X)$ which is quasi-isomorphic to $\bigoplus_{i=0}^n \mathcal{O}_X(-i)$, then

$$\mathsf{D}(\mathsf{QCoh}\,X)\cong\mathcal{D}B$$

Sketch. Let V be an (n+1)-dimensional k-vector space. In $\mathsf{Mod}\,\mathbf{P}^n_k$ we have an exact sequence

$$O \to \wedge^{n+1} V \otimes \mathcal{O}_{\mathbf{P}}(-n-1) \to \wedge^{n} V \otimes \mathcal{O}_{\mathbf{P}}(-n) \to \dots$$
$$\to \wedge^{1} V \otimes \mathcal{O}_{\mathbf{P}}(-1) \to \mathcal{O}_{\mathbf{P}} \to O$$

Since the above sequence is locally split exact, we have an exact sequence in Mod X

$$O \to \wedge^{n+1} V \otimes \mathcal{O}_X(-n-1) \to \wedge^n V \otimes \mathcal{O}_X(-n) \to \dots$$
$$\to \wedge^1 V \otimes \mathcal{O}_X(-1) \to \mathcal{O}_X \to O$$

Therefore $\bigoplus_{i=0}^{n} \mathcal{O}_X(-i)$ generates $\mathsf{D}(\mathsf{Qcoh}\,X)$.

Corollary 5.14 ([Be]). Let $B' = \operatorname{End}_{\mathbf{P}_{i}^{n}}(\bigoplus_{i=0}^{n} \mathcal{O}_{\mathbf{P}^{n}}(-i))$, then

$$\mathsf{D}(\mathsf{QCoh}\,\mathbf{P}^n_k) \cong \mathsf{D}(\mathsf{Mod}\,B')$$
$$\mathsf{D}^{\mathrm{b}}(\mathsf{Coh}\,\mathbf{P}^n_k) \cong \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\,B').$$

Proof. By Corollary 5.13, we have $D(\operatorname{\mathsf{QCoh}} \mathbf{P}_k^n) \cong \mathcal{D}B$. Let $B'' = \sigma_{\leq 0}B$ and $B' = \operatorname{H}^0 B$, we have morphisms $B' \leftarrow B'' \to B$ which induce $B' \stackrel{\sim}{\leftarrow} \operatorname{H}^{\bullet} B'' \stackrel{\sim}{\to} \operatorname{H}^{\bullet} B$. By [Ke1] 6.1 Example, we have $D(\operatorname{\mathsf{QCoh}} \mathbf{P}_k^n) \cong D(\operatorname{\mathsf{Mod}} B')$. Since $\operatorname{\mathsf{Coh}} \mathbf{P}_k^n$ and $\operatorname{\mathsf{mod}} B'$ have finite global dimensions, the full subcategories of $D(\operatorname{\mathsf{QCoh}} \mathbf{P}_k^n)$ and $D(\operatorname{\mathsf{Mod}} B')$ consisting of compact objects are equivalent to $D^{\mathrm{b}}(\operatorname{\mathsf{Coh}} \mathbf{P}_k^n)$ and $D^{\mathrm{b}}(\operatorname{\mathsf{mod}} B')$, respectively. By Theorem 6.3, we complete the proof.

Remark 5.15. Let (\vec{Q}, ρ) be the following quiver with relations:

$$0\underbrace{\vdots}_{\alpha_n^0}^{\alpha_0^0}1\underbrace{\vdots}_{\alpha_n^1}^{\alpha_0^1}2 \quad \cdots \quad n-\underbrace{1}_{\alpha_n^{n-1}}^{\alpha_0^{n-1}}n,$$

and ρ is the set of relations over k

$$\alpha_i^{l+1}\alpha_j^l = \alpha_j^{l+1}\alpha_i^l \text{ for } 0 \leq i < j \leq n, 0 \leq l < n-1.$$

Then B' of Corollary 5.14 is isomorphic to $k(\vec{Q}, \rho)$.

Remark 5.16. Recently, Bondal and Van den Bergh showed that the derived category D(QCoh X) of quasi-coherent sheaves of a Noetherian scheme X has a compact generator. By using [Ke2], they also showed that $D(QCoh X) \cong DB$ for some DG algebra B.

Example 5.17. In Example 3.10, let $B' = \operatorname{End}_{A}(P^{\bullet})$. Then we have

$$\mathsf{D}(\mathsf{Mod}\,A) \cong \mathcal{D}B'.$$

10

Let $B'' = B^{-1} \oplus B^0$ with $B^{-1} \longrightarrow B^0$

$$B^{-1} \to B^{0} : \operatorname{Hom}_{A}(P^{0}, P^{-1}) \to \operatorname{Hom}_{\mathsf{C}(\mathsf{Mod}\,A)}(P^{\bullet}, P^{\bullet})$$
$$(f \mapsto (f \circ d^{-1} - f^{-1} \circ f))$$

According to [Ke1] 6.1 Example, the natural inclusion $B'' \to B'$ induces the derived equivalence $\mathcal{D}B'' \cong \mathcal{D}B'$. Hence we have

$$\mathsf{D}(\mathsf{Mod}\,A) \cong \mathcal{D}B''.$$

Example 5.18. In Proposition 5.13, let $B' = \operatorname{End}_{A}^{\bullet}(P^{\bullet})$. Then we have

$$\mathsf{D}(\mathsf{Mod}\,A) \cong \mathcal{D}B'$$

Let $B'' = B^{-1} \oplus B^0$ with

$$\begin{array}{c} B^{-1} \to B^0 : \operatorname{Hom}_A(P^0, P^{-1}) \to \operatorname{Hom}_{\mathsf{C}(\mathsf{Mod}\,A)}(P^{\scriptscriptstyle\bullet}, P^{\scriptscriptstyle\bullet}) \\ (f \mapsto (f \circ d^{-1} - f^{-1} \circ f)) \end{array}$$

According to [Ke1] 6.1 Example, the natural inclusion $B'' \to B'$ induces the derived equivalence $\mathcal{D}B'' \cong \mathcal{D}B'$. Hence we have

$$\mathsf{D}(\mathsf{Mod}\,A)\cong \mathcal{D}B''.$$

Throughout this section all triangulated categories contains arbitrary coproducts.

Definition 6.1. A triangulated full subcategory \mathcal{L} of \mathcal{T} is called localizing provided that every coproduct of objects in \mathcal{L} is in \mathcal{L} .

Lemma 6.2. Let \mathcal{T} be a triangulated category, \mathcal{S} a generating set. Let \mathcal{L} be a localizing subcategory of \mathcal{T} which contains \mathcal{S} . Then $\mathcal{L} = \mathcal{T}$. Furthermore, for every $X \in \mathcal{T}$, there are distinguished triangles

$$Z_n \to X_n \to X_{n+1} \to Z_n[1]$$

with $X_0, Z_n \in \mathsf{Sum}\,\mathcal{S} \ (n \ge 0)$, such that

$$X \cong \operatorname{hlim} X_n$$

Here $\operatorname{Sum} S$ is the full subcategory of T consisting of coproducts of objects $X \in S$.

Proof. See [Ke1] 5.2 Theorem and [Ne] Theorem 4.1.

Theorem 6.3. Let $F : \mathcal{T}_1 \to \mathcal{T}_2$ be a ∂ -functor commuting with coproducts. Assume that there is a generating set S for \mathcal{T}_1 such that FS is a generating set for \mathcal{T}_2 . If $F|_S$ is fully faithful, then $F : \mathcal{T}_1 \to \mathcal{T}_2$ is an triangle equivalence. In this case, F induces the triangle equivalence $\mathcal{T}_1^c \to \mathcal{T}_2^c$, where \mathcal{T}_i^c is the triangulated full subcategory of \mathcal{T}_i consisting of compact objects.

Proof. Step 1. We have $\operatorname{Hom}_{\mathcal{T}_1}(C,Y) \cong \operatorname{Hom}_{\mathcal{T}_2}(FC,FY)$ for $C \in \mathcal{S}$ and $Y \in \operatorname{Sum} \mathcal{S}$.

Step 2. We have $\operatorname{Hom}_{\mathcal{T}_1}(C, Y) \cong \operatorname{Hom}_{\mathcal{T}_2}(FC, FY)$ for $C \in \mathcal{S}$ and $Y \in \mathcal{T}_1$.

 \therefore) Given $Y \in \mathcal{T}_1$, by Lemma 6.2, there are distinguished triangles

$$Z_n \to Y_n \to Y_{n+1} \to Z_n[1]$$

with $Y_0, Z_n \in \mathsf{Sum} \mathcal{S} \ (n \ge 0)$, such that

 $Y \cong \operatorname{hlim} Y_n$

By induction on n, we have $\operatorname{Hom}_{\mathcal{T}_1}(C, X_n) \cong \operatorname{Hom}_{\mathcal{T}_2}(FC, FY_n)$. Since FC is compact, we have $\operatorname{Hom}_{\mathcal{T}_1}(C, \operatorname{hlim} Y_n) \cong \operatorname{Hom}_{\mathcal{T}_2}(FC, F\operatorname{hlim} Y_n)$.

Step 3. We have $\operatorname{Hom}_{\mathcal{T}_1}(X,Y) \cong \operatorname{Hom}_{\mathcal{T}_2}(FX,FY)$ for $X,Y \in \mathcal{T}_1$.

 \therefore) It is similar to Step 2.

Step 4. Given $M \in \mathcal{T}_2$, by Lemma 6.2, there are distinguished triangles

$$N_n \to M_n \to M_{n+1} \to N_n$$

with $M_0, N_n \in \operatorname{Sum} FS$ $(n \ge 0)$, such that

$$M \cong \text{hlim } M_n$$

Since F is fully faithful, by induction there are distinguished triangles

$$Z_n \to X_n \to X_{n+1} \to Z_n[1]$$

with $X_0, Z_n \in \mathsf{Sum}\mathcal{S} \ (n \ge 0)$, such that

$$FZ_n \longrightarrow FX_n \longrightarrow FX_{n+1} \longrightarrow FZ_n[1]$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\downarrow}$$

$$N_n \longrightarrow M_n \longrightarrow M_{n+1} \longrightarrow N_n[1]$$

Hence

$$M \cong \underset{\cong}{\text{Him}} M_n$$
$$\cong \overrightarrow{Fhlim} X_n$$
$$\cong \overrightarrow{FX}$$

Since the compactness of an object is the categorical property, the last assertion is trivial. $\hfill \square$

References

- [Au] M. Auslander, Coherent functors, in Proc. Conf. Categorical Algebra, La Jolla 1965, pp. 189-231, Springer, 1966.
- [Be] A. A. Beilinson, Coherent sheaves on Pⁿ and problems of linear algebra, Funkt. Anal. Appl. 12 (1979), 68-69.
- [BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque 100 (1982).
- [BN] M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209-234.
- [BV] A. Bondal and M. Van den Bergh, Generators of triangulated categories and representability of functors, prepint.
- [Di] S. E. Dickson, A torsion theory for abelian categories, Trans. AMS 121 (1966), 233-235.
- [Ha] D. Happel, "Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras," London Math. Soc. Lecture Notes 119, University Press, Cambridge, 1987.
- [HR] D. Happel and C. M. Ringel, Tilted Algebras, Trans. AMS 274 (1982), 399-443.
- [HI] T. Holm, Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type, J. Algebra 211, (1999), 159-205.
- [Ho1] M. Hoshino, Tilting modules and torsion theories, Bull. London Math. Soc. 14 (1982), 334-336.
- [Ho2] M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11(4) (1983), 427-439.
- [HK] M. Hoshino and Y. Kato, Tilting complexes defined by idempotents, preprint.
- [Ke1] B. Keller, Deriving DG Categories, Ann. Scient. Ec. Norm. Sup. 27 (1994), 63 102.
- [Ke2] B. Keller, A_{∞} algebras and triangulated categories, in preparation.
- [Mi] J. Miyachi, Derived categories with Applications to Representations of Algebras, Seminar Note of a lecture at Chiba University in June 2000. Soc. 9 (1996), 205-236.

- [Ne] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. American Math. Soc. **9** (1996), 205-236.
- [RD] R. Hartshorne, "Residues and Duality", Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
- [Ri] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436-456.
- [VB] M. Van den Bergh, Abstract blowing down, Proc. Amer. Math. Soc. **128** (2000), 375-381.

J. MIYACHI: DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY, KOGANEI-SHI, TOKYO, 184-8501, JAPAN

E-mail address: miyachi@u-gakugei.ac.jp