t-STRUCTURES, TORSION THEORIES AND DG ALGEBRAS

JUN-ICHI MIYACHI

In this note, for a ring $A \operatorname{Mod} A(\operatorname{resp} ., \bmod A)$ is the category of right A-modules (resp., finitely generated right A-modules), and $\operatorname{Proj} A$ (resp., proj A) the category of projective right A-modules (resp., finitely generated projective right A-modules).

1. t-STRUCTURES

We recall the notion of t-structures which was introduced by Beilinson, Bernstein and Deligne. In this section, \mathcal{T} is a triangulated category, \mathcal{C} is a full subcategory of \mathcal{T} satisfying

$$
\operatorname{Hom}_{\mathcal{T}}(\mathcal{C}, \mathcal{C}[i])=0 \quad(i<0)
$$

Proposition 1.1. For a morphism $f: X \rightarrow Y$ in \mathcal{C}, suppose that there are $N, C \in$ \mathcal{C} such that

where all vertical and horizontal sequences are distinguished triangles. Then we have $\operatorname{ker} f=\alpha[-1], \operatorname{Cok} f=\beta$ in \mathcal{C}.
Definition 1.2. A morphism $f: X \rightarrow Y$ in \mathcal{C} is called \mathcal{C}-admissible if there exist $N, C \in \mathcal{C}$ satisfying Proposition 1.1. A sequence $X \rightarrow Y \rightarrow Z$ in \mathcal{C} is called an admissible short exact sequence if $X \rightarrow Y \rightarrow Z \rightarrow X[1]$ is a distinguish triangle for some $Z \rightarrow X[1]$.

Proposition 1.3. Suppose that \mathcal{C} is stable under finite coproducts. Then the following are equivalent.

1. \mathcal{C} is abelian, and all short exact sequences are admissible.
2. All morphisms in \mathcal{C} are \mathcal{C}-admissible.

Definition 1.4. A full subcategory \mathcal{C} of \mathcal{T} is called an admissible abelian category if \mathcal{C} satisfy the equivalent conditions in Proposition 1.3.

Definition 1.5. Let \mathcal{T} be a triangulated category. For full subcategories $\mathcal{T} \leq 0$ and $\mathcal{T} \geq 0,(\mathcal{T} \leq 0, \mathcal{T} \geq 0)$ is called a t-structure on \mathcal{T} provided that
(i) $\operatorname{Hom}_{\mathcal{T}}(\mathcal{T} \leq 0, \mathcal{T} \geq 1)=0$;
(ii) $\mathcal{T} \leq 0 \subset \mathcal{T} \leq 1$ and $\mathcal{T} \geq 0 \supset \mathcal{T} \geq 1$;

[^0](iii) for any $X \in \mathcal{T}$, there exists a distinguished triangle
$$
X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow
$$
with $X^{\prime} \in \mathcal{T} \leq 0$ and $X^{\prime \prime} \in \mathcal{T} \geq 1$,
where $\mathcal{T} \leq n=\mathcal{T}^{\leq 0}[-n]$ and $\mathcal{T} \geq n=\mathcal{T} \geq 0[-n]$.
The core of this t-structure is $\mathcal{C}=\mathcal{T} \leq 0 \cap \mathcal{T} \geq 0$.
Proposition 1.6. For $n \in \mathbb{Z}$, the following hold.

1. The inclusion $\mathcal{T} \leq n \rightarrow \mathcal{T}$ has a right adjoint $\sigma_{\leq n}: \mathcal{T} \rightarrow \mathcal{T} \leq n$.
2. The inclusion $\mathcal{T} \geq n \rightarrow \mathcal{T}$ has a left adjoint $\sigma_{\geq n}: \mathcal{T} \rightarrow \mathcal{T} \geq n$.
3. For any $X \in \mathcal{T}$, there exists a unique $d \in \operatorname{Hom}_{\mathcal{T}}\left(\sigma_{\geq 1} X, \sigma_{\leq 0} X[1]\right)$ such that

$$
\sigma_{\leq 0} X \rightarrow X \rightarrow \sigma_{\geq 1} X \xrightarrow{d} \sigma_{\leq 0} X[1]
$$

is a distinguished triangle.
4. Let $A \rightarrow X \rightarrow B \rightarrow A[1]$ be a distinguished triangle with $A \in \mathcal{T} \leq 0, B \in \mathcal{T} \geq 1$. Then this triangle is isomorphic to $\sigma_{\leq 0} X \rightarrow X \rightarrow \sigma_{\geq 1} X \xrightarrow{d} \sigma_{\leq 0} X[1]$.

Remark 1.7. For $X \in \mathcal{T}$, the following hold.

1. $\sigma_{\geq n} X=O$ iff $X \in \mathcal{T} \leq n-1$.
2. $\sigma_{\leq n} X=O$ iff $X \in \mathcal{T}^{\geq n+1}$.

Proposition 1.8. For $a \leq b, X \in \mathcal{T}$, there is an isomorphism $\sigma_{\geq a} \sigma_{\leq b} X \xrightarrow{\sim}$ $\sigma_{\leq b} \sigma_{\geq a} X$ such that

is commutative.
Theorem 1.9. The core $\mathcal{C}=\mathcal{T} \leq 0 \cap \mathcal{T} \geq 0$ is an admissible abelian category which is stable under extensions, and $\mathrm{H}^{0}=\sigma_{\geq 0} \sigma_{\leq 0}: \mathcal{T} \rightarrow \mathcal{C}$ is a cohomological functor.
Definition 1.10. A t-structure $\left(\mathcal{T}^{\leq 0}, \mathcal{T} \geq 0\right)$ on \mathcal{T} is called non-degenerate provided that $\bigcap_{n \in \mathbb{Z}} \mathcal{T} \leq n=\bigcap_{n \in \mathbb{Z}} \mathcal{T} \geq n=\{0\}$.
Proposition 1.11. Let $(\mathcal{T} \leq 0, \mathcal{T} \geq 0)$ be a non-degenerate t-structure. For $X \in \mathcal{T}$, the following hold.

1. $\mathrm{H}^{i} X=O$ for any n iff $X=O$.
2. $\mathrm{H}^{i} X=O$ for any $i>n$ (resp., $i<n$) iff $X \in \mathcal{T} \leq n$ (resp., $X \in \mathcal{T} \geq n$).

Here $\mathrm{H}^{i} X=\mathrm{H}^{0}(X[i])$.

2. t-structures Induced by Compact Objects

A triangulated category \mathcal{T} is said to contain coproducts if coproducts of objects indexed by any set exist in \mathcal{T}. An object C of \mathcal{T} is called compact if $\operatorname{Hom}_{\mathcal{T}}(C,-)$ commutes with coproducts. Furthermore, a collection \mathcal{S} of compact objects of \mathcal{T} is called a generating set provided that $X=0$ whenever $\operatorname{Hom}_{\mathcal{T}}(\mathcal{S}, X)=0$, and that \mathcal{S} is stable under suspensions. In this case, \mathcal{T} is called compactly generated (see [Ne] for details). For an object $C \in \mathcal{T}$ and an integer n, we denote by $\mathcal{T} \geq n(C)$ (resp.,
$\mathcal{T} \leq n(C))$ the full subcategory of \mathcal{T} consisting of $X \in \mathcal{T}$ with $\operatorname{Hom}_{\mathcal{T}}(C, X[i])=0$ for $i<n$ (resp., $i>n$), and set $\mathcal{T}^{0}(C)=\mathcal{T} \leq 0(C) \cap \mathcal{T} \geq 0(C)$.

For an abelian category \mathcal{A}, we denote by $\mathrm{C}(\mathcal{A})$ the category of complexes of \mathcal{A}, and denote by $\mathrm{D}(\mathcal{A})$ (resp., $\mathrm{D}^{+}(\mathcal{A}), \mathrm{D}^{-}(\mathcal{A}), \mathrm{D}^{\mathrm{b}}(\mathcal{A})$) the deri ved category of complexes of \mathcal{A} (resp., complexes of \mathcal{A} with bounded below homologies, complexes of \mathcal{A} with bounded above homologies, complexes of \mathcal{A} with bounded homologies). For an additive category \mathcal{B}, we denote by $\mathrm{K}(\mathcal{B})$ (resp., $\mathrm{K}^{-}(\mathcal{B}), \mathrm{K}^{\mathrm{b}}(\mathcal{B})$) the homotopy category of complexes of \mathcal{B} (resp., bounded above complexes of \mathcal{B}, bounded complexes of \mathcal{B}) (see [RD] for details).

Proposition 2.1. Let \mathcal{T} be a triangulated category which contains coproducts, C a compact object satisfying $\operatorname{Hom}_{\mathcal{T}}(C, C[n])=0$ for $n>0$. Then for any $r \in \mathbb{Z}$ and any object $X \in \mathcal{T}$, there exist an object $X^{\geq r} \in \mathcal{T} \geq r(C)$ and a morphism $\alpha^{\geq r}: X \rightarrow X^{\geq r}$ in \mathcal{T} such that
(i) for any $i \geq r, \operatorname{Hom}_{\mathcal{T}}\left(C, \alpha^{\geq r}[i]\right)$ is an isomorphism,
(ii) for every object $Y \in \mathcal{T} \geq r(C), \operatorname{Hom}_{\mathcal{T}}\left(\alpha^{\geq r}, Y\right)$ is an isomorphism.

Theorem 2.2. Let \mathcal{T} be a triangulated category which contains coproducts, C a compact object satisfying $\operatorname{Hom}_{\mathcal{T}}(C, C[n])=0$ for $n>0$, and $B=\operatorname{End}_{\mathcal{T}}(C)$. If $\{C[i] \mid i \in \mathbb{Z}\}$ is a generating set, then the following hold.
(1) $\left(\mathcal{T} \leq 0(C), \mathcal{T} \geq^{0}(C)\right)$ is a non-degenerate t-structure on \mathcal{T}.
(2) $\mathcal{T}^{0}(C)$ is admissible abelian.
(3) The functor

$$
\operatorname{Hom}_{\mathcal{T}}(C,-): \mathcal{T}^{0}(C) \rightarrow \operatorname{Mod} B
$$

is an equivalence.

3. Torsion Theories for Abelian Categories

Throughout this section, we fix the following notation. Let \mathcal{A} be an abelian category satisfying the condition $\mathrm{Ab4}$ (i.e. direct sums of exact sequences are exact), and let $d_{P}^{-1}: P^{-1} \rightarrow P^{0}$ be a morphism in \mathcal{A} with the P^{i} being small projective objects of \mathcal{A}, and denote by P^{\bullet} the mapping cone of d_{P}^{-1}. We set $\mathcal{C}\left(P^{\bullet}\right)=\mathrm{D}(\mathcal{A})^{0}\left(P^{\bullet}\right)$, $B=\operatorname{End}_{\mathrm{D}(\mathcal{A})}\left(P^{\bullet}\right)$, and define a pair of full subcategories of \mathcal{A}

$$
\begin{aligned}
& \mathcal{X}\left(P^{\cdot}\right)=\left\{X \in \mathcal{A} \mid \operatorname{Hom}_{D(\mathcal{A})}\left(P^{\cdot}, X[1]\right)=0\right\} \\
& \mathcal{Y}\left(P^{\cdot}\right)=\left\{X \in \mathcal{A} \mid \operatorname{Hom}_{D(\mathcal{A})}\left(P^{\cdot}, X\right)=0\right\}
\end{aligned}
$$

For any $X \in \mathcal{A}$, we define a subobject of X

$$
\tau(X)=\sum_{f \in \operatorname{Hom}_{\mathcal{A}}\left(\mathrm{H}^{0}(P \cdot), X\right)} \operatorname{Im} f
$$

and an exact sequence in \mathcal{A}

$$
\left(e_{X}\right): 0 \rightarrow \tau(X) \xrightarrow{j_{X}} X \rightarrow \pi(X) \rightarrow 0 .
$$

Remark 3.1. It is easy to see that P. is a compact object of $\mathrm{D}(\mathcal{A})$, and we have $\mathcal{X}\left(P^{\bullet}\right)=\mathrm{D}(\mathcal{A})^{\leq 0}\left(P^{\bullet}\right) \cap \mathcal{A}$ and $\mathcal{Y}\left(P^{\bullet}\right)=\mathrm{D}(\mathcal{A})^{\geq 1}\left(P^{\bullet}\right) \cap \mathcal{A}$.
Lemma 3.2. For any $X^{\cdot} \in \mathrm{D}(\mathcal{A})$ and $n \in \mathbb{Z}$, we have a functorial exact sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(P^{\bullet}, \mathrm{H}^{n-1}\left(X^{*}\right)[1]\right) \rightarrow \operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(P^{*}, X^{\bullet}[n]\right) \rightarrow \operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(P^{*}, \mathrm{H}^{n}\left(X^{\bullet}\right)\right) \rightarrow 0
$$

Moreover, the above short exact sequence commutes with coproducts.

Definition 3.3. A pair $(\mathcal{X}, \mathcal{Y})$ of full subcategories \mathcal{X}, \mathcal{Y} in an abelian category \mathcal{A} is called a torsion theory for \mathcal{A} provided that the following conditions are satisfied (see e.g. [Di] for details):
(i) $\mathcal{X} \cap \mathcal{Y}=\{0\}$;
(ii) \mathcal{X} is closed under factor objects;
(iii) \mathcal{Y} is closed under subobjects;
(iv) for any object X of \mathcal{A}, there exists an exact sequence $0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0$ in \mathcal{A} with $X^{\prime} \in \mathcal{X}$ and $X^{\prime \prime} \in \mathcal{Y}$.

Remark 3.4. Let \mathcal{A} be an abelian category and $(\mathcal{X}, \mathcal{Y})$ a torsion theory for \mathcal{A}. Then for any $Z \in \mathcal{A}$, the following hold.
(1) $Z \in \mathcal{X}$ if and only if $\operatorname{Hom}_{\mathcal{A}}(Z, \mathcal{Y})=0$.
(2) $Z \in \mathcal{Y}$ if and only if $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, Z)=0$.

Theorem 3.5. The following are equivalent for a complex $P^{\cdot}: P^{-1} \xrightarrow{d_{P}^{-1}} P^{0}$ with the P^{i} being small projective objects of \mathcal{A}.
(1) $\left\{P^{\bullet}[i] \mid i \in \mathbb{Z}\right\}$ is a generating set for $\mathrm{D}(\mathcal{A})$ and $\operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(P^{\cdot}, P^{\cdot}[i]\right)=0$ for all $i>0$.
(2) $\mathcal{X}\left(P^{\bullet}\right) \cap \mathcal{Y}\left(P^{\bullet}\right)=\{0\}$ and $\mathrm{H}^{0}\left(P^{\bullet}\right) \in \mathcal{X}\left(P^{\bullet}\right)$.
(3) $\mathcal{X}\left(P^{\bullet}\right) \cap \mathcal{Y}\left(P^{\bullet}\right)=\{0\}$ and $\tau(X) \in \mathcal{X}\left(P^{\bullet}\right), \pi(X) \in \mathcal{Y}\left(P^{\bullet}\right)$ for all $X \in \mathcal{A}$.
(4) $\left(\mathcal{X}\left(P^{\cdot}\right), \mathcal{Y}\left(P^{\cdot}\right)\right)$ is a torsion theory for \mathcal{A}.

Lemma 3.6. Assume $\mathcal{X}\left(P^{\bullet}\right) \cap \mathcal{Y}\left(P^{\cdot}\right)=\{0\}$. Then for any $X^{\cdot} \in \mathrm{D}(\mathcal{A})$, the following are equivalent.
(1) $X^{\cdot} \in \mathcal{C}\left(P^{\cdot}\right)$.
(2) $\mathrm{H}^{n}\left(X^{\bullet}\right)=0$ for $n>0$ and $n<-1, \mathrm{H}^{0}\left(X^{\bullet}\right) \in \mathcal{X}\left(P^{\bullet}\right)$ and $\mathrm{H}^{-1}\left(X^{\bullet}\right) \in \mathcal{Y}\left(P^{\cdot}\right)$.

Remark 3.7. Let \mathcal{A} be an abelian category and \mathcal{X}, \mathcal{Y} full subcategories of \mathcal{A}. Then the pair $(\mathcal{X}, \mathcal{Y})$ is a torsion theory for \mathcal{A} if and only if the following two conditions are satisfied:
(i) $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})=0$;
(ii) for any object X in \mathcal{A}, there exists an exact sequence $0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0$ in \mathcal{A} with $X^{\prime} \in \mathcal{X}$ and $X^{\prime \prime} \in \mathcal{Y}$.
Theorem 3.8. Let P. be a complex $P^{-1} \xrightarrow{d_{P}^{-1}} P^{0}$ with the P^{i} being small projective objects of \mathcal{A}. Assume $\mathcal{X}\left(P^{\bullet}\right) \cap \mathcal{Y}\left(P^{\bullet}\right)=\{0\}$ and $\mathrm{H}^{0}\left(P^{\cdot}\right) \in \mathcal{X}\left(P^{\bullet}\right)$. Then the following hold.
(1) $\mathcal{C}\left(P^{\bullet}\right)$ is admissible abelian.
(2) The functor

$$
\operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(P^{\bullet},-\right): \mathcal{C}\left(P^{\bullet}\right) \rightarrow \operatorname{Mod} B
$$ is an equivalence.

(3) $\left(\mathcal{Y}\left(P^{\bullet}\right)[1], \mathcal{X}\left(P^{\bullet}\right)\right)$ is a torsion theory for $\mathcal{C}\left(P^{\bullet}\right)$.

Proposition 3.9. Assume P. satisfies the conditions
(i) $\{P \cdot[i] \mid i \in \mathbb{Z}\}$ is a generating set for $\mathrm{D}(\mathcal{A})$,
(ii) $\operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(P^{\bullet}, P \cdot[i]\right)=0$ for $i \neq 0$.

If \mathcal{A} has either enough projectives or enough injectives, then we have an equivalence of triangulated categories

$$
\mathrm{D}^{\mathrm{b}}(\mathcal{A}) \cong \mathrm{D}^{\mathrm{b}}(\operatorname{Mod} B)
$$

Example 3.10 (cf. [HK]). Let A be a finite dimensional algebra over a field k given by a quiver

with relations $\beta \alpha=\gamma \beta=\delta \gamma=\alpha \delta=0$. For each vertex i, we denote by $S(i), P(i)$ the corresponding simple and indecomposable projective left A-modules, respectively. Define a complex P• as the mapping cone of the homomorphism

$$
d_{P}^{-1}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & 0 & g & 0
\end{array}\right]: P(2)^{2} \oplus P(4)^{2} \rightarrow P(1) \oplus P(3),
$$

where f and g denote the right multiplications of α and γ, respectively. Then P. is not a tilting complex. However, P • satisfies the assumption of Theorem 3.8 and hence we have an equivalence of abelian categories

$$
\operatorname{Hom}_{\mathrm{D}(\operatorname{Mod} A)}\left(P^{\cdot},-\right): \mathcal{C}\left(P^{\cdot}\right) \rightarrow \operatorname{Mod} B
$$

where $B=\operatorname{End}_{\mathrm{D}(\operatorname{Mod} A)}\left(P^{\bullet}\right)$ is a finite dimensional k-algebra given by a quiver

$$
1 \leftarrow 2 \quad 3 \leftarrow 4
$$

There exist exact sequences in $\mathcal{C}\left(P^{\bullet}\right)$ of the form

$$
0 \rightarrow S(1) \rightarrow S(2)[1] \rightarrow P(1)[1] \rightarrow 0, \quad 0 \rightarrow S(3) \rightarrow S(4)[1] \rightarrow P(3)[1] \rightarrow 0
$$

and these objects and morphisms generate $\mathcal{C}\left(P^{\cdot}\right)$.
In the rest of this section, we deal with the case where R is a commutative artin ring, I is an injective envelope of an R-module $R / \operatorname{rad}(R)$ and A is a finitely generated R-module. We denote by $\bmod A$ the full abelian subcategory of $\operatorname{Mod} A$ consisting of finitely generated modules. P • is also a complex $P^{-1} \xrightarrow{d_{P}^{-1}} P^{0}$ with the P^{i} being finitely generated projective A-modules. Note that $\mathrm{H}^{n}\left(P^{\bullet}\right), \mathrm{H}^{n}\left(\nu\left(P^{\bullet}\right)\right) \in$ $\bmod A$ for all $n \in \mathbb{Z}$. We set

$$
\mathcal{X}_{c}\left(P^{\bullet}\right)=\mathcal{X}\left(P^{\bullet}\right) \cap \bmod A \quad \text { and } \quad \mathcal{Y}_{c}\left(P^{\bullet}\right)=\mathcal{Y}\left(P^{\bullet}\right) \cap \bmod A .
$$

Proposition 3.11. For any tilting complexes $P_{1}: P_{1}^{-1} \rightarrow P_{1}^{0}, P_{2}: P_{2}^{-1} \rightarrow P_{2}^{0}$ for A of term length two, the following are equivalent.
(1) $\left(\mathcal{X}_{c}\left(P_{\mathrm{i}}\right), \mathcal{Y}_{c}\left(P_{\mathrm{i}}\right)\right)=\left(\mathcal{X}_{c}\left(P_{\dot{2}}\right), \mathcal{Y}_{c}\left(P_{\dot{2}}\right)\right)$.
(2) $\operatorname{add}\left(P_{\dot{1}}\right)=\operatorname{add}\left(P_{\dot{2}}\right)$ in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$.

Proposition 3.12. The following are equivalent for a complex $P^{-1} \rightarrow P^{0} \in$ $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$
(1) $P \cdot$ is a tilting complex.
(2) $\mathcal{X}_{c}\left(P^{\bullet}\right) \cap \mathcal{Y}_{c}\left(P^{\bullet}\right)=\{0\}, \mathrm{H}^{0}\left(P^{\bullet}\right) \in \mathcal{X}_{c}\left(P^{\bullet}\right)$ and $\mathrm{H}^{-1}\left(P^{\bullet}\right) \in \mathcal{Y}_{c}\left(P^{\bullet}\right)$.
(3) $\left(\mathcal{X}_{c}\left(P^{\bullet}\right), \mathcal{Y}_{c}\left(P^{\bullet}\right)\right)$ is a torsion theory for $\bmod A$ and $\mathrm{H}^{-1}\left(P^{\bullet}\right) \in \mathcal{Y}_{c}\left(P^{\bullet}\right)$.
(4) $\left(\mathcal{X}_{c}\left(P^{\bullet}\right), \mathcal{Y}_{c}\left(P^{\bullet}\right)\right)$ is a torsion theory for $\bmod A$ and $\mathcal{X}_{c}\left(P^{\bullet}\right)$ is stable under $D A \otimes_{A}{ }^{-}$.
(5) $\left(\mathcal{X}_{c}\left(P^{\bullet}\right), \mathcal{Y}_{c}\left(P^{\cdot}\right)\right)$ is a torsion theory for $\bmod A$ and $\mathcal{Y}_{c}\left(P^{\bullet}\right)$ is stable under $\operatorname{Hom}_{A}(D A,-)$.

Definition 3.13. Let \mathcal{A} be an abelian category and \mathcal{C} a full subcategory of \mathcal{A} closed under extensions. Then an object $X \in \mathcal{C}$ is called Ext-projective (resp., Extinjective) if $\operatorname{Ext}_{\mathcal{A}}^{1}(X, \mathcal{C})=0\left(\right.$ resp., $\left.\operatorname{Ext}_{\mathcal{A}}^{1}(\mathcal{C}, X)=0\right)$.

Proposition 3.14. Assume $P \cdot$ is a tilting complex. Then the following hold.
(1) $\mathrm{H}^{0}\left(P^{\bullet}\right) \in \mathcal{X}_{c}\left(P^{\bullet}\right)$ is Ext-projective and generates $\mathcal{X}_{c}\left(P^{\bullet}\right)$.
(2) $\mathrm{H}^{-1}\left(\nu\left(P^{\cdot}\right)\right) \in \mathcal{Y}_{c}\left(P^{\cdot}\right)$ is Ext-injective and cogenerates $\mathcal{Y}_{c}\left(P^{\cdot}\right)$.

Theorem 3.15. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for $\bmod A$ such that \mathcal{X} contains an Ext-projective module X which generates \mathcal{X}, \mathcal{Y} contains an Ext-injective module Y which cogenerates \mathcal{Y}, and \mathcal{X} is stable under $D A \otimes_{A}-$. Let $M_{\dot{X}}$ be a minimal projective presentation of X and $N_{\dot{Y}}$ a minimal injective presentation of Y. Then

$$
P^{\bullet}=M_{\dot{X}} \oplus \operatorname{Hom}_{A}^{\cdot}\left(D A, N_{\dot{Y}}\right)[1]
$$

is a tilting complex such that $\mathcal{X}=\mathcal{X}_{c}\left(P^{\bullet}\right)$ and $\mathcal{Y}=\mathcal{Y}_{c}\left(P^{\bullet}\right)$.
Remark 3.16. Let

$$
\mathfrak{S}=\left\{P^{\cdot}: P^{-1} \rightarrow P^{0} \in \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} A) \mid P^{\cdot} \text { is a tilting complex for } A\right\}
$$

on which we define the equivalence relation $P_{1} \sim P_{2}$ provided add $P_{1}=\operatorname{add} P_{2}$ in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$, and let \mathfrak{T} be the collection of torsion theories $(\mathcal{X}, \mathcal{Y})$ for $\bmod A$ such that \mathcal{X} contains an Ext-projective module X which generates \mathcal{X}, \mathcal{Y} contains an Ext-injective module Y which cogenerates \mathcal{Y}, and \mathcal{X} is stable under $D A \otimes_{A}-$. Set

$$
\begin{aligned}
\Phi\left(P^{\bullet}\right) & =\left(\left(\mathcal{X}_{c}\left(P^{\bullet}\right), \mathcal{Y}_{c}\left(P^{\bullet}\right)\right) \text { for } P^{\bullet} \in \mathfrak{S},\right. \\
\Psi((\mathcal{X}, \mathcal{Y})) & =M_{X} \oplus \operatorname{Hom}_{A}^{*}\left(D A, N_{\dot{Y}}^{*}\right)[1] \text { for }(\mathcal{X}, \mathcal{Y}) \in \mathfrak{T} .
\end{aligned}
$$

Then, according to Propositions 3.11, 3.12, 3.14 and Theorem 3.15, Φ and Ψ induce a one to one correspondence between \mathfrak{S} / \sim and \mathfrak{T}.

4. Perverse t-structures Induced by Torsion Theories

We recall the notion of perverse t-structures which was introduced by [BBD] and was translated into the language of torsion theories by [VB], and show a relation to the results of Section 3. In this section, \mathcal{A} is an abelian category, $\mathcal{D}=\mathrm{D}^{*}(\mathcal{A})$, where $*=$ nothing,,+- or b , and

$$
\begin{aligned}
& \mathcal{D}^{\leq 0}:=\left\{X \in \mathcal{D} \mid \mathrm{H}^{i}(X)=O \text { for } i>0\right\} \\
& \mathcal{D}^{\geq 0}:=\left\{X \in \mathcal{D} \mid \mathrm{H}^{i}(X)=O \text { for } i<0\right\}
\end{aligned}
$$

Definition 4.1. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for \mathcal{A}. We set

$$
\begin{aligned}
{ }^{p} \mathcal{D}^{\leq 0} & :=\left\{X \in \mathcal{D}^{\leq 0} \mid \mathrm{H}^{0}(X) \in \mathcal{X}\right\} \\
{ }^{p} \mathcal{D}^{\geq 0} & :=\left\{X \in \mathcal{D}^{\geq-1} \mid \mathrm{H}^{-1}(X) \in \mathcal{Y}\right\}
\end{aligned}
$$

Lemma 4.2. For $X^{\cdot} \in \mathcal{D}^{\leq 0}$, we have a distinguished triangle

$$
X_{\mathrm{i}} \rightarrow X^{\cdot} \rightarrow X_{\dot{2}} \rightarrow X_{\mathrm{i}}[1]
$$

with $X_{\dot{1}} \in{ }^{p} \mathcal{D}^{\leq 0}, X_{\dot{2}} \in{ }^{p} \mathcal{D}^{\geq 1} \cap \mathcal{D}^{0}$.

Sketch. We have

Proposition 4.3. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for \mathcal{A}. Then $\left({ }^{p} \mathcal{D}^{\leq 0},{ }^{p} \mathcal{D}^{\geq 0}\right)$ is a non-degenerate t-structure in \mathcal{D}.
Proof. For $X^{\cdot} \in{ }^{p} \mathcal{D}^{\leq 0}, Y^{\cdot} \in{ }^{p} \mathcal{D}^{\geq 1}$, we have

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{D}}\left(X^{\cdot}, Y^{\cdot}\right) & \cong \operatorname{Hom}_{\mathcal{D}}\left(\sigma_{\geq 0} X^{\cdot}, \sigma_{\leq 0} Y^{\bullet}\right) \\
& \cong \operatorname{Hom}_{\mathcal{D}}\left(\mathrm{H}^{0} X^{\cdot}, \mathrm{H}^{0} Y^{\bullet}\right) \\
& =0
\end{aligned}
$$

It is easy to see that ${ }^{p} \mathcal{D}^{\leq 0} \subset{ }^{p} \mathcal{D}^{\leq 1}$ and ${ }^{p} \mathcal{D}^{\geq 1} \subset{ }^{p} \mathcal{D}^{\geq 0}$. Let $Y^{\cdot} \in \mathcal{D}$. By Lemma 4.2, we have a commutative diagram

where all vertical and horizontal sequences are distinguished triangles, and $Y_{i} \in$ ${ }^{p} \mathcal{D} \leq 0, Y_{\dot{2}} \in{ }^{p} \mathcal{D}^{\geq 1} \cap \mathcal{D}^{0}$. Therefore $Z \cdot \in \mathcal{D}^{\geq 0}$ and $\mathrm{H}^{0} Z . \cong \mathrm{H}^{0} Y_{2} \in \mathcal{Y}$. Hence $Z \cdot \in{ }^{p} \mathcal{D}^{\geq 1}$. Since ${ }^{p} \mathcal{D} \leq 0 \subset \mathcal{D} \leq 0$ and ${ }^{p} \mathcal{D}^{\geq 0} \subset \mathcal{D}^{\geq-1}$, it is non-degenerate.
Proposition 4.4. Let $(\mathcal{X}, \mathcal{Y})$ be a torsion theory for $\mathcal{A},{ }^{p} \mathcal{C}={ }^{p} \mathcal{D}^{\leq 0} \cap^{p} \mathcal{D}^{\geq 0}$. Then ${ }^{p} \mathcal{C}$ is admissible abelian and $(\mathcal{Y}[1], \mathcal{X})$ is a torsion theory for ${ }^{p} \mathcal{C}$.

Proof. It is easy to see that $\operatorname{Hom}_{\mathcal{D}}(\mathcal{Y}[1], \mathcal{X})=\{O\} . X^{\cdot} \in{ }^{p} \mathcal{C}$ iff $X^{\cdot} \cong Y^{\cdot}: Y^{-1} \rightarrow$ Y^{0} with $\mathrm{H}^{0} Y^{\cdot} \in \mathcal{X}$ and $\mathrm{H}^{-1} Y^{\cdot} \in \mathcal{Y}$. Then we have a distinguished triangle

$$
\mathrm{H}^{-1} Y^{\bullet}[1] \rightarrow Y^{\bullet} \rightarrow \mathrm{H}^{0} Y^{\bullet} \rightarrow \mathrm{H}^{-1} Y^{\bullet}[2] .
$$

This means that we have an exact sequence in ${ }^{p} \mathcal{C}$

$$
O \rightarrow F \rightarrow Y^{\cdot} \rightarrow T \rightarrow O
$$

with $F \in \mathcal{Y}[1], T \in \mathcal{X}$.
Proposition 4.5. Let P be a complex $P^{-1} \rightarrow P^{0}$ with the P^{i} being small projective objects of \mathcal{A}. Assume $\mathcal{X}\left(P^{\bullet}\right) \cap \mathcal{Y}\left(P^{\bullet}\right)=\{0\}$ and $\mathrm{H}^{0}\left(P^{\bullet}\right) \in \mathcal{X}\left(P^{\cdot}\right)$. Then a perverse t-structure $\left({ }^{p} \mathcal{D}^{\leq 0},{ }^{p} \mathcal{D}^{\geq 0}\right)$ coincides with $\left(\mathcal{D}^{\leq 0}\left(P^{\cdot}\right), \mathcal{D}^{\geq 0}\left(P^{\bullet}\right)\right)$.

Proof. By Lemma 3.2.

5. DG-Algebras and Derived Equivalences

Definition 5.1. A differential graded algebra (a $D G$ algebra) B over a commutative ring k is a \mathbb{Z}-graded k-algebra $B=\coprod_{n \in \mathbb{Z}} B^{n}$ endowed with a differential $d: B^{n} \rightarrow B^{n+1} \quad(n \in \mathbb{Z})$ such that

$$
d(a b)=d(a) b+(-1)^{p} a d(b)
$$

for $a \in B^{p}$.
A $D G$ (right) B-module M is a \mathbb{Z}-graded B-module $M=\coprod_{n \in \mathbb{Z}} M^{n}$ endowed with a differential $d: M^{n} \rightarrow M^{n+1}(n \in \mathbb{Z})$ such that

$$
d(m a)=d(m) a+(-1)^{p} m d(a)
$$

for $m \in M^{p}, a \in B$.
For $D G B$-module M, N and $n \in \mathbb{Z}$,

$$
\begin{aligned}
\operatorname{Hom}_{\operatorname{Gr}_{B}}(M, N)^{n} & =\text { the set of graded B-homomorphisms of degree } n \\
\operatorname{Hom}_{\operatorname{Gr} B}(M, N) & =\coprod_{n \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Gr} B}(M, N)^{n} \\
\operatorname{Hom}_{\operatorname{Dif} B}(M, N) & =\operatorname{Hom}_{\operatorname{Gr} B}(M, N) \text { endowed with the differential } \\
\partial & : \operatorname{Hom}_{\mathrm{Gr}_{B}}(M, N)^{n} \rightarrow \operatorname{Hom}_{\mathrm{Gr} B}(M, N)^{n+1} \\
\left(\partial\left(\left(f^{p}\right)_{p \in \mathbb{Z}}\right)\right. & \left.=\left(d_{N}^{p+n} \circ f^{p}+(-1)^{n+1} f^{p+1} \circ d_{M}^{p}\right)_{p \in \mathbb{Z}}\right) \\
\operatorname{Hom}_{\mathcal{C} B}(M, N) & =\mathrm{Z}^{0} \operatorname{Hom}_{\text {Dif } B}(M, N) \\
\operatorname{Hom}_{\mathcal{H} B}(M, N) & =\mathrm{H}^{0} \operatorname{Hom}_{\text {Dif } B}(M, N)
\end{aligned}
$$

Definition 5.2. The suspension functor $S: \mathcal{C} B \rightarrow \mathcal{C} B$ is defined by

$$
\begin{aligned}
(S M)^{n} & =M^{n+1} \\
m \cdot a & =m a \\
d_{S M}^{n} & =-d_{M}^{n+1}
\end{aligned}
$$

for $M \in \mathcal{C} B$.
For $u: M \rightarrow N$ in $\mathcal{C} B$, the mapping cone $\mathrm{M}(u)$ is defined by

$$
\begin{aligned}
\mathrm{M}^{n}(u) & =N^{n} \oplus M^{n+1} \\
{\left[\begin{array}{c}
n \\
m
\end{array}\right] \cdot a } & =\left[\begin{array}{c}
n a \\
m a
\end{array}\right] \\
d_{\mathrm{M}(u)}^{n} & =\left[\begin{array}{cc}
d_{N}^{n} & u^{n+1} \\
0 & -d_{M}^{n+1}
\end{array}\right]
\end{aligned}
$$

Proposition 5.3. The following hold.

1. Let \mathcal{S}_{B} be the collection of exact sequences $O \rightarrow X \rightarrow Y \rightarrow Z \rightarrow O$ in $\mathcal{C} B$ such that $O \rightarrow X^{n} \rightarrow Y^{n} \rightarrow Z^{n} \rightarrow O$ is split exact in $\operatorname{Mod} k$. Then $\left(\mathcal{C} B, \mathcal{S}_{B}\right)$ is a Frobenius category.
2. Let \mathcal{T}_{B} be the collection of sextuples (X, Y, Z, i, v, w) which are isomorphic to standard triangles in $\mathcal{H} B$. Then $\left(\mathcal{H} B, \mathcal{T}_{B}\right)$ is a triangulated category.

Concerning the notion of Frobenius categories, see [Ha], [Mi] Section 5.
Definition 5.4. For a $D G$ algebra B, $\mathrm{H}^{\cdot} B=\coprod_{n \in \mathbb{Z}} \mathrm{H}^{n} B$. For $D G B$-module M, $\mathrm{H}^{\cdot} M=\coprod_{n \in \mathbb{Z}} \mathrm{H}^{n} M$. Then we have the functor $\mathrm{H}^{\cdot}: \mathcal{H} A \rightarrow \mathrm{Gr} \mathrm{H}^{\cdot} B$. A morphism $f: M \rightarrow N$ is called quasi-isomorphism if $\mathrm{H}^{\cdot} f$ is isomorphism.

Let Σ be the collection of quasi-isomorphisms in $\mathcal{H} B$, then $\mathcal{D} B$ is $\Sigma^{-1} \mathcal{H} B$. In this case, the canonical functor $\mathcal{C} B \rightarrow \mathcal{H} B \rightarrow \mathcal{D} B$ commutes with coproducts.

Lemma 5.5. Let $\left(\mathcal{F}_{i}, \mathcal{S}_{i}\right)$ be Frobenius categories $(i=1,2)$. If a functor $F: \mathcal{F}_{1} \rightarrow$ \mathcal{F}_{2} satisfies that $F\left(\mathcal{S}_{1}\right) \subset \mathcal{S}_{2}$ and that $F Q$ is \mathcal{S}_{2}-projective for every \mathcal{S}_{1}-projective object Q, then F induces ∂-functor $\underline{F}: \underline{\mathcal{F}}_{1} \rightarrow \underline{\mathcal{F}}_{2}$.

Definition 5.6. Let \mathcal{A} be an abelian category. For a complexes $X^{\cdot}, Y^{\cdot} \in \mathrm{C}(\mathcal{A})$, we define the complex $\operatorname{Hom}_{\mathcal{A}}\left(X^{\bullet}, Y^{\bullet}\right)$ by

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{A}}^{p}\left(X^{\cdot}, Y^{\bullet}\right) & =\prod_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}\left(X^{n}, Y^{n+p}\right) \\
\operatorname{Hom}_{\mathcal{A}}\left(X^{\cdot}, Y^{\bullet}\right) & =\coprod_{p \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}^{p}\left(X^{\cdot}, Y^{\bullet}\right) \\
d_{\operatorname{Ho~m~m}_{\mathcal{A}}\left(X^{\cdot}, Y^{\bullet}\right)}^{p}\left(\left(f^{n}\right)_{n \in \mathbb{Z}}\right) & =\left(d_{Y}^{n+p} \circ f^{n}-(-1)^{p} f^{n+1} \circ d_{X}^{n}\right)_{n \in \mathbb{Z}} .
\end{aligned}
$$

Proposition 5.7. Let \mathcal{A} be an AB4-category, \mathcal{A}^{\prime} thick abelian subcategory which is closed under coproducts. Let $C \cdot \in \mathcal{C}_{\mathcal{A}^{\prime}}(\mathcal{A}), B=\operatorname{End}_{\mathrm{C}_{(\mathcal{A})}}(C \cdot)$. Then the following hold.

1. We have the functor $\operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot},-\right): \mathrm{C}_{\mathcal{A}^{\prime}}(\mathcal{A}) \rightarrow \mathcal{C} B$.
2. $\operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot},-\right)$ induces the ∂-functor $\operatorname{Hom}_{\mathcal{A}}{ }^{(}\left(C^{\cdot},-\right): \mathrm{K}_{\mathcal{A}^{\prime}}(\mathcal{A}) \rightarrow \mathcal{H} B$.
3. If there is a triangulated full subcategory \mathcal{L} of $\mathrm{K}_{\mathcal{A}^{\prime}}(\mathcal{A})$ such that
(a) every $X^{\cdot} \in \mathrm{K}_{\mathcal{A}^{\prime}}(\mathcal{A})$ has a quasi-isomorphic to some complex in \mathcal{L},
(b) $\operatorname{Hom}_{K(\mathcal{A})}\left(\mathrm{K}_{\mathcal{A}^{\prime}}^{\phi}(\mathcal{A}), \mathcal{L}\right)=0$,
then the ∂-functor $\operatorname{Hom}_{\mathcal{A}}{ }^{(}\left(C^{\cdot},-\right): \mathrm{K}_{\mathcal{A}^{\prime}}(\mathcal{A}) \rightarrow \mathcal{H} B$ induces the right derived functor $\boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot},-\right): \mathrm{D}_{\mathcal{A}^{\prime}}(\mathcal{A}) \rightarrow \mathcal{D} B$.

Here $\mathrm{K}_{\mathcal{A}^{\prime}}^{\phi}(\mathcal{A})$ is the full subcategory of $\mathrm{K}_{\mathcal{A}^{\prime}}(\mathcal{A})$ consisting of acyclic complexes. In this case, we say that $\mathrm{K}_{\mathcal{A}^{\prime}}(\mathcal{A})$ has a $\mathrm{K}_{\mathcal{A}^{\prime}}^{\phi}(\mathcal{A})$-Bousfield localization.
Lemma 5.8. Let \mathcal{A} be an AB4-category. Let $C \cdot \in(\mathcal{A})$ which is a bounded complex of small projective objects, and $B=\operatorname{End}_{\bar{C}(\mathcal{A})}\left(C^{\cdot}\right)$. Then the following hold.

1. $\boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot},-\right)$ commutes with coproducts.
2. $\operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(C^{\cdot}, X^{\bullet}\right) \cong \operatorname{Hom}_{\mathcal{D} B}\left(\boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot}, C^{\bullet}\right), \boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot}, X^{\bullet}\right)\right)$.

Lemma 5.9. Let \mathcal{A} be an AB4-category, \mathcal{A}^{\prime} thick abelian subcategory which is closed under coproducts. Assume that $\mathrm{K}_{\mathcal{A}^{\prime}}(\mathcal{A})$ has a $\mathrm{K}_{\mathcal{A}^{\prime}}^{\phi}(\mathcal{A})$-Bousfield localization. Let $C \in \mathcal{C}_{\mathcal{A}^{\prime}}(\mathcal{A})$ which is $\mathrm{K}_{\mathcal{A}^{\prime}}^{\phi}(\mathcal{A})$-local and is compact in $\mathrm{D}_{\mathcal{A}^{\prime}}(\mathcal{A})$, and $B=\operatorname{End}_{\mathrm{C}(\mathcal{A})}\left(C^{\cdot}\right)$. Then the following hold.

1. $\boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot},-\right)$ commutes with coproducts.
2. $\operatorname{Hom}_{\mathrm{D}(\mathcal{A})}\left(C^{\cdot}, X^{\cdot}\right) \cong \operatorname{Hom}_{\mathcal{D} B}\left(\boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot}, C^{\cdot}\right), \boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot}, X^{\bullet}\right)\right)$.

Proposition 5.10. Under the condition of Lemma 5.8 (resp., Lemma 5.9), if $\left\{C^{\cdot}[i] \mid i \in \mathbb{Z}\right\}$ is a generating set for $\mathrm{D}(\mathcal{A})$ (resp., $\mathrm{D}_{\mathcal{A}^{\prime}}(\mathcal{A})$), then $\boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}\left(C^{\cdot},-\right)$: $\mathrm{D}(\mathcal{A}) \rightarrow \mathcal{D} B$ (resp., $\left.\boldsymbol{R} \operatorname{Hom}_{\mathcal{A}}^{*}\left(C^{\cdot},-\right): \mathrm{D}_{\mathcal{A}^{\prime}}(\mathcal{A}) \rightarrow \mathcal{D} B\right)$ is an equivalence.
Proof. By Theorem 6.3 of Appendix.
Corollary 5.11. Let P. be a bounded complex of finitely generated projective modules over a ring $A, B=\operatorname{End}^{\mathbf{C}(\mathcal{A})}(C \cdot)$. If $\{P \cdot[i] \mid i \in \mathbb{Z}\}$ is a generating set for $\mathrm{D}(\operatorname{Mod} A)$, then $\boldsymbol{R} \operatorname{Hom}_{A}\left(P^{\cdot},-\right): \mathrm{D}(\operatorname{Mod} A) \rightarrow \mathcal{D} B$ is an equivalence.
Corollary 5.12. Let X be a quasi-compact separated scheme over an algebraically closed field. If a perfect complex $C \cdot \in \mathrm{C}_{q c}^{+}(\operatorname{lnj} X)$ satisfies that $\{C \cdot[i] \mid i \in \mathbb{Z}\}$ is a generating set for $\mathrm{D}_{q c}(X)$ (or $\mathrm{D}(\mathrm{QCoh} X)$), then
$\mathrm{D}(\mathrm{QCoh} X) \cong \mathcal{D} B$
with $B=\operatorname{End}_{\mathrm{C}_{(\mathcal{A})}}\left(C^{\bullet}\right)$.
Proof. According to $[\mathrm{BN}], \mathrm{K}_{q c}(X)$ has a $\mathrm{K}_{q c}^{\phi}(X)$-Bousfield localization, and $\mathrm{D}_{q c}(X)$ $\cong \mathrm{D}(\mathrm{QCoh} X)$. By 5.10 we complete the proof.

Corollary 5.13. Let X be a projective scheme which embeds to \mathbf{P}_{k}^{n}. If a complex $C \cdot \in \mathrm{C}_{q c}^{+}(\operatorname{lnj} X)$ which is quasi-isomorphic to $\oplus_{i=0}^{n} \mathcal{O}_{X}(-i)$, then

$$
\mathrm{D}(\mathrm{QCoh} X) \cong \mathcal{D} B
$$

Sketch. Let V be an $(n+1)$-dimensional k-vector space. In $\operatorname{Mod} \mathbf{P}_{k}^{n}$ we have an exact sequence

$$
\begin{aligned}
O \rightarrow \wedge^{n+1} V \otimes \mathcal{O}_{\mathbf{P}}(-n-1) & \rightarrow \wedge^{n} V \otimes \mathcal{O}_{\mathbf{P}}(-n) \rightarrow \ldots \\
& \rightarrow \wedge^{1} V \otimes \mathcal{O}_{\mathbf{P}}(-1) \rightarrow \mathcal{O}_{\mathbf{P}} \rightarrow O
\end{aligned}
$$

Since the above sequence is locally split exact, we have an exact sequence in Mod X

$$
\begin{aligned}
O \rightarrow \wedge^{n+1} V \otimes \mathcal{O}_{X}(-n-1) & \rightarrow \wedge^{n} V \otimes \mathcal{O}_{X}(-n) \rightarrow \ldots \\
& \rightarrow \wedge^{1} V \otimes \mathcal{O}_{X}(-1) \rightarrow \mathcal{O}_{X} \rightarrow O
\end{aligned}
$$

Therefore $\oplus_{i=0}^{n} \mathcal{O}_{X}(-i)$ generates $\mathrm{D}($ Qcoh $X)$.
Corollary $5.14([\mathrm{Be}])$. Let $B^{\prime}=\operatorname{End}_{\mathbf{P}_{k}^{n}}\left(\oplus_{i=0}^{n} \mathcal{O}_{\mathbf{P}^{n}}(-i)\right)$, then

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{Q} \operatorname{Coh} \mathbf{P}_{k}^{n}\right) & \cong \mathrm{D}\left(\operatorname{Mod} B^{\prime}\right) \\
\mathrm{D}^{\mathrm{b}}\left(\operatorname{Coh} \mathbf{P}_{k}^{n}\right) & \cong \mathrm{D}^{\mathrm{b}}\left(\bmod B^{\prime}\right) .
\end{aligned}
$$

Proof. By Corollary 5.13, we have $\mathrm{D}\left(\mathrm{QCoh} \mathbf{P}_{k}^{n}\right) \cong \mathcal{D} B$. Let $B^{\prime \prime}=\sigma_{\leq 0} B$ and $B^{\prime}=\mathrm{H}^{0} B$, we have morphisms $B^{\prime} \leftarrow B^{\prime \prime} \rightarrow B$ which induce $B^{\prime} \leftleftarrows \mathrm{H}^{\cdot} B^{\prime \prime} \xrightarrow{\sim}$ $\mathrm{H}^{\cdot} B$. By $[\mathrm{Ke} 1]$ 6.1 Example, we have $\mathrm{D}\left(\mathrm{QCoh} \mathbf{P}_{k}^{n}\right) \cong \mathrm{D}\left(\operatorname{Mod} B^{\prime}\right)$. Since Coh \mathbf{P}_{k}^{n} and $\bmod B^{\prime}$ have finite global dimensions, the full subcategories of $\mathrm{D}\left(\mathrm{QCoh} \mathbf{P}_{k}^{n}\right)$ and $\mathrm{D}\left(\operatorname{Mod} B^{\prime}\right)$ consisting of compact objects are equivalent to $\mathrm{D}^{\mathrm{b}}\left(\operatorname{Coh} \mathbf{P}_{k}^{n}\right)$ and $D^{\mathrm{b}}\left(\bmod B^{\prime}\right)$, respectively. By Theorem 6.3 , we complete the proof.

Remark 5.15. Let (\vec{Q}, ρ) be the following quiver with relations:

and ρ is the set of relations over k

$$
\alpha_{i}^{l+1} \alpha_{j}^{l}=\alpha_{j}^{l+1} \alpha_{i}^{l} \text { for } 0 \leq i<j \leq n, 0 \leq l<n-1 .
$$

Then B^{\prime} of Corollary 5.14 is isomorphic to $k(\vec{Q}, \rho)$.
Remark 5.16. Recently, Bondal and Van den Bergh showed that the derived category $\mathrm{D}(\mathrm{QCoh} X)$ of quasi-coherent sheaves of a Noetherian scheme X has a compact generator. By using [Ke2], they also showed that $\mathrm{D}(\mathrm{QCoh} X) \cong \mathcal{D} B$ for some $D G$ algebra B.

Example 5.17. In Example 3.10, let $B^{\prime}=\operatorname{End}_{A}{ }_{A}\left(P^{\bullet}\right)$. Then we have

$$
\mathrm{D}(\operatorname{Mod} A) \cong \mathcal{D} B^{\prime}
$$

Let $B^{\prime \prime}=B^{-1} \oplus B^{0}$ with

$$
\begin{aligned}
B^{-1} \rightarrow B^{0}: \operatorname{Hom}_{A}\left(P^{0}, P^{-1}\right) & \rightarrow \operatorname{Hom}_{\mathrm{C}(\operatorname{Mod} A)}\left(P^{\cdot}, P^{\bullet}\right) \\
(f & \left.\mapsto\left(f \circ d^{-1}-f^{-1} \circ f\right)\right)
\end{aligned}
$$

According to $[\mathrm{Ke} 1]$ 6.1 Example, the natural inclusion $B^{\prime \prime} \rightarrow B^{\prime}$ induces the derived equivalence $\mathcal{D} B^{\prime \prime} \cong \mathcal{D} B^{\prime}$. Hence we have

$$
\mathrm{D}(\operatorname{Mod} A) \cong \mathcal{D} B^{\prime \prime}
$$

Example 5.18. In Proposition 5.13, let $B^{\prime}=\operatorname{End}_{A}\left(P^{\bullet}\right)$. Then we have

$$
\mathrm{D}(\operatorname{Mod} A) \cong \mathcal{D} B^{\prime}
$$

Let $B^{\prime \prime}=B^{-1} \oplus B^{0}$ with

$$
\begin{aligned}
B^{-1} \rightarrow B^{0}: \operatorname{Hom}_{A}\left(P^{0}, P^{-1}\right) & \rightarrow \operatorname{Hom}_{\mathrm{C}(\operatorname{Mod} A)}\left(P^{\cdot}, P^{\bullet}\right) \\
(f & \left.\mapsto\left(f \circ d^{-1}-f^{-1} \circ f\right)\right)
\end{aligned}
$$

According to $[\mathrm{Ke} 1]$ 6.1 Example, the natural inclusion $B^{\prime \prime} \rightarrow B^{\prime}$ induces the derived equivalence $\mathcal{D} B^{\prime \prime} \cong \mathcal{D} B^{\prime}$. Hence we have

$$
\mathrm{D}(\operatorname{Mod} A) \cong \mathcal{D} B^{\prime \prime}
$$

6. Appendix

Throughout this section all triangulated categories contains arbitrary coproducts.

Definition 6.1. A triangulated full subcategory \mathcal{L} of \mathcal{T} is called localizing provided that every coproduct of objects in \mathcal{L} is in \mathcal{L}.
Lemma 6.2. Let \mathcal{T} be a triangulated category, \mathcal{S} a generating set. Let \mathcal{L} be a localizing subcategory of \mathcal{T} which contains \mathcal{S}. Then $\mathcal{L}=\mathcal{T}$. Furthermore, for every $X \in \mathcal{T}$, there are distinguished triangles

$$
Z_{n} \rightarrow X_{n} \rightarrow X_{n+1} \rightarrow Z_{n}[1]
$$

with $X_{0}, Z_{n} \in \operatorname{Sum} \mathcal{S}(n \geq 0)$, such that

$$
X \cong \operatorname{hlim}_{\longrightarrow} X_{n}
$$

Here $\operatorname{Sum} \mathcal{S}$ is the full subcategory of \mathcal{T} consisting of coproducts of objects $X \in \mathcal{S}$.
Proof. See [Ke1] 5.2 Theorem and [Ne] Theorem 4.1.
Theorem 6.3. Let $F: \mathcal{T}_{1} \rightarrow \mathcal{T}_{2}$ be a ∂-functor commuting with coproducts. Assume that there is a generating set \mathcal{S} for \mathcal{T}_{1} such that $F \mathcal{S}$ is a generating set for \mathcal{T}_{2}. If $\left.F\right|_{\mathcal{S}}$ is fully faithful, then $F: \mathcal{T}_{1} \rightarrow \mathcal{T}_{2}$ is an triangle equivalence. In this case, F induces the triangle equivalence $\mathcal{T}_{1}^{c} \rightarrow \mathcal{T}_{2}^{c}$, where \mathcal{T}_{i}^{c} is the triangulated full subcategory of \mathcal{T}_{i} consisting of compact objects.
Proof. Step 1. We have $\operatorname{Hom}_{\mathcal{T}_{1}}(C, Y) \cong \operatorname{Hom}_{\mathcal{T}_{2}}(F C, F Y)$ for $C \in \mathcal{S}$ and $Y \in$ Sum \mathcal{S}.

Step 2. We have $\operatorname{Hom}_{\mathcal{T}_{1}}(C, Y) \cong \operatorname{Hom}_{\mathcal{T}_{2}}(F C, F Y)$ for $C \in \mathcal{S}$ and $Y \in \mathcal{T}_{1}$.
$\because)$ Given $Y \in \mathcal{T}_{1}$, by Lemma 6.2, there are distinguished triangles

$$
Z_{n} \rightarrow Y_{n} \rightarrow Y_{n+1} \rightarrow Z_{n}[1]
$$

with $Y_{0}, Z_{n} \in \operatorname{Sum} \mathcal{S}(n \geq 0)$, such that

$$
Y \cong \underset{\longrightarrow}{\operatorname{hlim}} Y_{n}
$$

By induction on n, we have $\operatorname{Hom}_{\mathcal{T}_{1}}\left(C, X_{n}\right) \cong \operatorname{Hom}_{\mathcal{T}_{2}}\left(F C, F Y_{n}\right)$. Since $F C$ is compact, we have $\operatorname{Hom}_{\mathcal{T}_{1}}\left(C, \operatorname{hlim} Y_{n}\right) \cong \operatorname{Hom}_{\mathcal{T}_{2}}\left(F C, F \operatorname{hlim} Y_{n}\right)$.

Step 3. We have $\operatorname{Hom}_{\mathcal{T}_{1}(X} \overrightarrow{(X)} \cong \operatorname{Hom}_{\mathcal{T}_{2}}\left(F X, F \overrightarrow{Y)}\right.$ for $X, Y \in \mathcal{T}_{1}$.
\because) It is similar to Step 2 .
Step 4. Gi ven $M \in \mathcal{T}_{2}$, by Lemma 6.2, there are distinguished triangles

$$
N_{n} \rightarrow M_{n} \rightarrow M_{n+1} \rightarrow N_{n}[1]
$$

with $M_{0}, N_{n} \in \operatorname{Sum} F \mathcal{S}(n \geq 0)$, such that

$$
M \cong \underset{\longrightarrow}{\operatorname{hlim}} M_{n}
$$

Since F is fully faithful, by induction there are distinguished triangles

$$
Z_{n} \rightarrow X_{n} \rightarrow X_{n+1} \rightarrow Z_{n}[1]
$$

with $X_{0}, Z_{n} \in \operatorname{Sum} \mathcal{S}(n \geq 0)$, such that

Hence

$$
\begin{aligned}
M & \cong \operatorname{\operatorname {hlim}} M_{n} \\
& \cong F \overrightarrow{\operatorname{hlim}} X_{n} \\
& \cong F \vec{X}
\end{aligned}
$$

Since the compactness of an object is the categorical property, the last assertion is trivial.

References

[Au] M. Auslander, Coherent functors, in Proc. Conf. Categorical Algebra, La Jolla 1965, pp. 189-231, Springer, 1966.
[Be] A. A. Beilinson, Coherent sheaves on \mathbf{P}^{n} and problems of linear algebra, Funkt. Anal. Appl. 12 (1979), 68-69.
[BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque 100 (1982).
[BN] M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209-234.
[BV] A. Bondal and M. Van den Bergh, Generators of triangulated categories and representability of functors, prerpint.
[Di] S. E. Dickson, A torsion theory for abelian categories, Trans. AMS 121 (1966), 233-235.
[Ha] D. Happel, "Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras," London Math. Soc. Lecture Notes 119, University Press, Cambridge, 1987.
[HR] D. Happel and C. M. Ringel, Tilted Algebras, Trans. AMS 274 (1982), 399-443.
[Hl] T. Holm, Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type, J. Algebra 211, (1999), 159-205.
[Ho1] M. Hoshino, Tilting modules and torsion theories, Bull. London Math. Soc. 14 (1982), 334-336.
[Ho2] M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11(4) (1983), 427-439.
[HK] M. Hoshino and Y. Kato, Tilting complexes defined by idempotents, preprint.
[Ke1] B. Keller, Deriving DG Categories, Ann. Scient. Ec. Norm. Sup. 27 (1994), 63-102.
[Ke2] B. Keller, A_{∞} algebras and triangulated categories, in preparation.
[Mi] J. Miyachi, Derived categories with Applications to Representations of Algebras, Seminar Note of a lecture at Chiba University in June 2000. Soc. 9 (1996), 205-236.
[Ne] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. American Math. Soc. 9 (1996), 205-236.
[RD] R. Hartshorne, "Residues and Duality", Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
[Ri] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436-456.
[VB] M. Van den Bergh, Abstract blowing down, Proc. Amer. Math. Soc. 128 (2000), 375-381.
J. Miyachi: Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo, 184-8501, Japan

E-mail address: miyachi@u-gakugei.ac.jp

[^0]: This is a seminar note of which I gave a lecture at Osaka City University in March 2001.

