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Abstract

We give a short proof of the fact that any Riemannian or Lorentzian real analytic metric
in dimension 3 can be locally adapted to the diagonal form. We use the classical Cauchy-
Kowalevski Theorem to this purpose.

Introduction

The problem of local diagonalization of a Riemannian metric in the three-dimensional real analytic
case is classical (see e.g. Eisenhart [4] or, for a more modern treatment, Bryant et al. [1]. It has
been shown (DeTurck and Yang [2]) that a C∞-Riemannian 3-metric always admits diagonaliza-
tion. An essential contribution in the higher-dimensional case is that by Tod [8]. Here Riemannian
or Lorentzian metric with n > 3 is considered. It is shown that diagonalizability of the metric gener-
ically imposes restrictions on the third derivative of the Weyl tensor when n = 4, the first derivative
of the Weyl tensor when n = 5 and the Weyl tensor itself when n > 5. It is also shown that some
of the plane-wave metrics provide examples of four-dimensional non-diagonalizable Lorentzian
metrics. The following classical theorem is well-known:

Theorem A. Let (M, g) be a real analytic three-dimensional Riemannian manifold. Then, in a
neighborhood of each point p ∈ M, there is a system (x, y, z) of local coordinates in which g adopts
a diagonal form. All coordinate transformations for which the diagonality of g is preserved depend
on three arbitrary real analytic functions of two variables.

As communicated to us privately by P. Tod (and, thanks to him, also by J. Grant), a modification
of this theorem to the Lorentzian case should be rather easy. Yet, the authors mentioned above do
not remember seeing any published version of the proof. The aim of our paper is to give a short
proof of such a modification in the classical context.

Main Theorem. Let (M, g) be a real analytic three-dimensional pseudo-Riemannian manifold.
Then, in a neighborhood of each point p ∈ M, there is a system (x, y, z) of local coordinates in
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which g adopts a diagonal form. All coordinate transformations for which the diagonality of g is
preserved depend (locally) on three arbitrary real analytic functions of two variables.

The proof is the aim of the next Section. Yet, we shall recall here the classical Cauchy-
Kowalevski Theorem. A modern presentation of this theorem can be found e.g. in [3, 7]. Yet,
here we shall present its original version.

Theorem B ( [5]). Let

(0.1)
∂riui

∂x1ri
= Hi(x1, x2, . . . , xn, u1, u2, . . . , um, q), i = 1, 2, . . . ,m,

be a system of partial differential equations for unknown functions ui = ui(x1, x2, . . . , xn), i =

1, 2, . . . ,m, of independent variables x1, x2, . . . , xn defined on an open set of the number space Rn,
where q denotes the set of partial derivatives( ∂i1+i2+···+inu j

∂x1i1∂x2i2 · · · ∂xn
in

; j = 1, 2, . . . ,m, 1 ≤ i1 + i2 + · · · + in ≤ r j, i1 , r j
)

and Hi, i = 1, 2, . . . ,m, are real analytic at

xα = aα, α = 1, 2, . . . , n, u j = b j, j = 1, 2, . . . ,m,

∂i1+i2+···+inu j

∂x1i1∂x2i2 · · · ∂xn
in

= c j,i1,i2,...,in ,

j = 1, 2, . . . ,m, 1 ≤ i1 + i2 + · · · + in ≤ r j, i1 , r j.

Moreover let functions ϕiλ = ϕiλ(x2, x3, . . . , xn), i = 1, 2, . . . ,m, λ = 0, 1, . . . , ri − 1, be real analytic
at (a1, a2, . . . , an) and satisfy

∂i1+i2+···+inϕiλ

∂x2i2∂x3i3 · · · ∂xn
in

(a1, a2, . . . , an) = ci,λ,i2,...,in ,

i = 1, 2, . . . ,m, λ = 0, 1, . . . , ri − 1, 1 ≤ i2 + i3 + · · · + in ≤ ri − λ,

ci,0,0,...,0 = bi, i = 1, 2, . . . ,m.

Then the system (0.1) has unique solutions

ui = Φi(x1, x2, . . . , xn), i = 1, 2, . . . ,m,

where Φi, i = 1, 2, . . . ,m, are real analytic at (a1, a2, . . . , an), and satisfy

∂λΦi

∂x1λ
(a1, x2, . . . , xn) = ϕiλ(x2, x3, . . . , xn),

i = 1, 2, . . . ,m, λ = 0, 1, . . . , ri − 1.

1 Proof of the Main Theorem

Let M be a three-dimensional real analytic manifold, and g a pseudo-Riemannian metric on M.
Since our problem is only local, we can assume that (M, g) is of the form (U, g), where U ⊂

R3[x1, x2x3] is an open domain and g is a pseudo-Riemannian metric on U, i.e., of the form

(1.1) g =

3∑
i, j=1

gi jdxidx j,
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where gi j = gi j(x1, x2, x3), i, j = 1, 2, 3, are entries of a symmetric regular matrix. We shall use
the Cauchy-Kowalevski Theorem to show that, in a neighborhood of any fixed point p ∈ U, there
exists a local coordinate system (u, v, w) diagonalizing the expression of g. Then we can write the
Cartesian coordinate functions x1, x2 and x3 in the form

(1.2) x1 = F(u, v, w), x2 = G(u, v, w), x3 = H(u, v, w),

where F, G and H are real analytic functions of u, v and w. Now we have

(1.3)

dx1 = Fudu + Fvdv + Fwdw,

dx2 = Gudu + Gvdv + Gwdw,

dx3 = Hudu + Hvdv + Hwdw,

where the lower indices u, v and w of F, G and H indicate the first partial derivatives of the corre-
sponding functions.

Substituting (1.3) into (1.1), we obtain the expression for g in the new coordinates u, v and w,
let us say

(1.4)
g = G11(du)2 + 2G12dudv + 2G13dudw

+ G22(dv)2 + 2G23dvdw + G33(dw)2

and we shall express explicitly the diagonality conditions G12 = G13 = G23 = 0. We get the
following three partial differential equations of first order which are quadratic and homogeneous
with respect to the first derivatives of the unknown functions F, G and H:

(1.5)
g11FuFv + g12(FuGv + FvGu) + g13(FuHv + FvHu)

+ g22GuGv + g23(GuHv + GvHu) + g33HuHv = 0,

(1.6)
g11FuFw + g12(FuGw + FwGu) + g13(FuHw + FwHu)

+ g22GuGw + g23(GuHw + GwHu) + g33HuHw = 0,

(1.7)
g11FvFw + g12(FvGw + FwGv) + g13(FvHw + FwHv)

+ g22GvGw + g23(GvHw + GwHv) + g33HvHw = 0.

This system of partial differential equations is obviously not of the form to which the Cauchy-
Kowalevski Theorem can be applied. Namely, according to (0.1), we need to express all three
first derivatives of the functions F, G and H with respect to one of the variables u, v or w, which
is not possible here. But we can help ourselves in this situation using a simple transformation of
independent variables. (See [6] for an analogous situation). We define new functions U, V and W
of the variables x = w, y = v and z = u + v + w by

U(x, y, z) = F(u, v, w), V(x, y, z) = G(u, v, w), W(x, y, z) = H(u, v, w).
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Hence we have

(1.8)

Fu(u, v, w) = Uz(w, v, u + v + w),

Fv(u, v, w) = Uy(w, v, u + v + w) + Uz(w, v, u + v + w),

Fw(u, v, w) = Ux(w, v, u + v + w) + Uz(w, v, u + v + w),

Gu(u, v, w) = Vz(w, v, u + v + w),

Gv(u, v, w) = Vy(w, v, u + v + w) + Vz(w, v, u + v + w),

Gw(u, v, w) = Vx(w, v, u + v + w) + Vz(w, v, u + v + w),

Hu(u, v, w) = Wz(w, v, u + v + w),

Hv(u, v, w) = Wy(w, v, u + v + w) + Wz(w, v, u + v + w),

Hw(u, v, w) = Wx(w, v, u + v + w) + Wz(w, v, u + v + w).

Substituting these expressions into (1.5)–(1.7), we obtain a new system of PDE’s for our problem
evaluated at (x, y, z) = (w, v, u + v + w). Here we shall use a brief notation for the partial derivatives
of U, V and W, and also for the new metric components ḡi j(x, y, z) = gi j(z−y− x, y, x), i, j = 1, 2, 3,
defined in the same domain as U, V and W. The new equations will be again quadratic with respect
to the first derivatives but not more homogeneous. Indeed, we get three PDE’s

(1.9)
ḡ11(Uz)2 + 2ḡ12UzVz + 2ḡ13UzWz + ḡ22(Vz)2 + 2ḡ23VzWz + ḡ33(Wz)2

+ A(y)Uz + B(y)Vz + C(y)Wz = 0,

(1.10)
ḡ11(Uz)2 + 2ḡ12UzVz + 2ḡ13UzWz + ḡ22(Vz)2 + 2ḡ23VzWz + ḡ33(Wz)2

+ A(x)Uz + B(x)Vz + C(x)Wz = 0,

(1.11)
ḡ11(Uz)2 + 2ḡ12UzVz + 2ḡ13UzWz + ḡ22(Vz)2 + 2ḡ23VzWz + ḡ33(Wz)2

+ A(x)Uz + B(x)Vz + C(x)Wz + A(y)Uz + B(y)Vz + C(y)Wz + D = 0,

where we put

(1.12)

A(x) = ḡ11Ux + ḡ12Vx + ḡ13Wx,

B(x) = ḡ21Ux + ḡ22Vx + ḡ23Wx,

C(x) = ḡ31Ux + ḡ32Vx + ḡ33Wx,

A(y) = ḡ11Uy + ḡ12Vy + ḡ13Wy,

B(y) = ḡ21Uy + ḡ22Vy + ḡ23Wy,

C(y) = ḡ31Uy + ḡ32Vy + ḡ33Wy,

and

D = D(x, y) = A(y)Ux + B(y)Vx + C(y)Wx.

Subtracting (1.9) from (1.10) we obtain

(1.13)
{
A(x) − A(y)

}
Uz +

{
B(x) − B(y)

}
Vz +

{
C(x) −C(y)

}
Wz = 0.

Also, subtracting (1.10) from (1.11), we obtain

(1.14) A(y)Uz + B(y)Vz + C(y)Wz + D = 0,
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and hence

(1.15) Wz = −(A(y)Uz + B(y)Vz + D)/C(y).

We can assume here C(y) , 0 as we shall see later. Substituting (1.15) into (1.9) and (1.13), we
obtain

(1.16)

{
ḡ11C(y)2 − 2ḡ13A(y)C(y) + ḡ33A(y)2}(Uz)2

+ 2
{
ḡ12C(y)2 − ḡ13B(y)C(y) − ḡ23A(y)C(y) + ḡ33A(y)B(y)

}
UzVz

+
{
ḡ22C(y)2 − 2ḡ23B(y)C(y) + ḡ33B(y)2}(Vz)2

− 2
{
ḡ13C(y)D − ḡ33A(y)D

}
Uz − 2

{
ḡ23C(y)D − ḡ33B(y)D

}
Vz

+ ḡ33D2 −C(y)2D = 0

and

(1.17)
{
A(x)C(y) − A(y)C(x)

}
Uz +

{
B(x)C(y) − B(y)C(x)

}
Vz

+
{
C(y) −C(x)

}
D = 0.

We now have to solve the system of two PDE’s, one quadratic (1.16) and one linear (1.17), with
respect to the functions Uz and Vz. If this system can be solved in an explicit form

(1.18) Uz = T1, Vz = T2,

where T1 and T2 are real analytic functions of x, y, z, U, V , W and of the derivatives Ux, Uy, Vx, Vy,
then, after the substitution into (1.14), we obtain a system of three PDE’s expressed with respect to
Uz, Vz and Wz in the form where the Cauchy-Kowalevski Theorem can be directly applied.

Recall the Cauchy initial conditions for this case. Let (x0, y0, z0) be a point from the definition
domain of the functions U, V and W. Define three functions of two variables x and y (real analytic
but arbitrary) in a neighborhood of (x0, y0) in the (x, y)-plane by the formulas

(1.19) M1(x, y) = U(x, y, z0), M2(x, y) = V(x, y, z0), M3(x, y) = W(x, y, z0).

Further, denote for a moment x, y and z as x1, x2 and x3. We shall define constants

ai = Mi(x0, y0), ai, j =
∂Mi

∂x j
(x0, y0), i = 1, 2, 3, j = 1, 2.

These constants are obviously arbitrary parameters (the Taylor coefficients of the expansions of
Mi, i = 1, 2, 3, of degree zero and one, respectively). We can rewrite them in the form a1 =

U(x0, y0, z0), a2 = V(x0, y0, z0), a3 = W(x0, y0, z0), a1,1 = Ux(x0, y0, z0), a2,1 = Vx(x0, y0, z0),
a3,1 = Wx(x0, y0, z0), a1,2 = Uy(x0, y0, z0), a2,2 = Vy(x0, y0, z0) and a3,2 = Wy(x0, y0, z0).

We shall now need the following Lemma that asserts existence of real quadrics on the (Uz,Vz)-
plane.

Lemma 1.1. We can choose our initial conditions at (x0, y0, z0) so that the equation (1.16) defines
a real quadric in the (Uz,Vz)-plane.
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Proof of the Lemma. We treat our objects at a fixed point (x0, y0, z0), and we shall use an abbreviate
notation everywhere. For example, we denote by ḡi j the values ḡi j(x0, y0, z0), i, j = 1, 2, 3,

By (1.12) we have

A(y) = ḡ11a1,2 + ḡ12a2,2 + ḡ13a3,2,

B(y) = ḡ21a1,2 + ḡ22a2,2 + ḡ23a3,2,

C(y) = ḡ31a1,2 + ḡ32a2,2 + ḡ33a3,2,

D = A(y)a1,1 + B(y)a2,1 + C(y)a3,1.

Due to the regularity of the matrix (ḡi j), i, j = 1, 2, 3, we can choose the initial conditions a1,2, a2,2
and a3,2 so that A(y) = 0, B(y) = 0 and C(y) > 0. For this choice of initial conditions we have
D = C(y)a3,1.

Now our quadratic equation (1.16) reduces to

(1.20) t xGx − 2 t bx + c = 0,

where

x =

(
Uz

Vz

)
, b =

(
ḡ13a3,1
ḡ23a3,1

)
, G =

(
ḡ11 ḡ12
ḡ12 ḡ22

)
, c = ḡ33(a3,1)2 − D

and t x is the transpose of the vector x.
Since our metric g is non-degenerate, we see that G is not a null matrix; otherwise we get a

contradiction with the regularity of the matrix (ḡi j), i, j = 1, 2, 3. Hence the rank of G is 2 or 1.
Firstly, if rank(G) = 2, then the eigenvalues λ1 and λ2 of G are non-zero. Now we put x̄ =

x −G−1b, where G−1 is the inverse matrix of G, and x̃ = tT x̄, where T is a fixed orthogonal matrix
which diagonalizes G. Then (1.20) reduces to

(1.21) t x̃
(
λ1 0
0 λ2

)
x̃ +

1
λ1λ2

det
(

G −b
− t b c

)
= 0.

Now, if the eigenvalues λ1 and λ2 have opposite signs, our quadric is real. Assume next that λ1
and λ2 are both positive. We need to prove that the second term of (1.21) can be made negative.
Indeed, the initial Cauchy condition a3,1 can be chosen positive and as small as needed. Let us
develop the determinant of degree 3 in (1.21) with respect to the first two lines. We obtain the sum
of (1/λ1λ2)(det G)c = c and two other terms which are tending to zero if a3,1 is tending to zero.
Moreover, c has the same sign as −D for a3,1 tending to zero. Since C(y) > 0, we get D > 0.

Secondly, if rank(G) = 1, then one of eigenvalues of G is non-zero, say λ1 , 0 and λ2 = 0. Now
we put x̄ = tT x and b̄ = tT b, where T is a fixed orthogonal matrix which diagonalizes G. Then
(1.20) reduces to

t x̄
(
λ1 0
0 0

)
x̄ − 2 t b̄x̄ + c = 0,

that is,

λ1 x̄1
2 − 2(b̄1 x̄1 + b̄2 x̄2) + c = 0,
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where(
x̄1
x̄2

)
= x̄,

(
b̄1
b̄2

)
= b̄.

We see that the both components b̄1 and b̄2 of b̄ are tending to zero when a3,1 is tending to zero.
Hence we can conclude the argument analogously to the first case. We only remark that the quadric
is now either a parabola or a couple of straight lines.

This completes the proof of the Lemma.

Now, if we choose the initial conditions as in the proof of Lemma 1.1, the formula (1.17)
simplifies to

A(x)C(y)Uz + B(x)C(y)Vz + {C(y) −C(x)}D = 0.

We see easily that, choosing the initial conditions properly, we can assume that this line is an
arbitrary line in the (Uz,Vz)-plane.

Suppose now that the Cauchy initial conditions are chosen in such a way that the corresponding
real quadric (1.16) and the corresponding line (1.17) intersect transversally. If we now fix one of
the intersection points, let us say (Uz(x0, y0, z0),Vz(x0, y0, z0)), then, due to the implicit function
theorem for the real analytic case, the derivatives Uz and Vz are real analytic functions of the x, y,
z, U, V , W, Ux, Uy, Vx and Vy in a neighborhood of (x0, y0, z0) with the above prescribed values
at (x0, y0, z0). Hence (1.18) is satisfied and the Cauchy-Kowalevski Theorem can be applied to the
whole system of PDE’s. Hence the Main Theorem follows.
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[6] O. Kowalski and Z. Vlášek, On 3D-Riemannian manifolds with prescribed Ricci eigenvalues.
Complex, contact and symmetric manifolds, 187–208, Progr. Math., 234, Birkhäuser Boston,
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