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Pseudo-symmetric spaces of constant type
in dimension three

Oldřich Kowalski1 and Masami Sekizawa

Abstract

Pseudo-symmetric spaces of constant type in dimension three are Riemannian mani-
folds of dimension three whose Ricci tensor has, at all points, one double eigenvalue
and one simple constant eigenvalue. The explicit classification of such spaces with
nonzero constant eigenvalue is given.

Introduction

According to [6], a Riemannian manifold (M, g) is said to be pseudo-symmetric if the following
formula holds for arbitrary vector fields X and Y on M:

(0.1) R(X, Y) · R = F((X ∧ Y) · R),

where

a) R denotes the Riemannian curvature tensor of type (1,3) on (M, g) and

R(X,Y) = [∇X ,∇Y ] − ∇[X,Y]

denote the corresponding curvature transformations,

b) X ∧ Y denotes the endomorphism of the tangent bundle T M defined by

(0.2) (X ∧ Y)Z = g(Y, Z)X − g(X,Z)Y,

c) F is a smooth function on M,

d) the dot in each side of the formula (0.1) denotes the derivation on the tensor algebra of T M
induced by an endomorphism of this tangent bundle.

We call a pseudo-symmetric space (M, g) of constant type if F = c̃ = constant.
Using the Introduction in [15] (where a result of [5] plays an essential role) we obtain easily the

following characterization in dimension three:

1This research was supported by the grant GA ČR 201/96/0227
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Proposition 0.1. A three-dimensional Riemannian manifold (M, g) is pseudo-symmetric of constant
type F = c̃ if and only if its principal Ricci curvatures ρ1, ρ2 and ρ3 locally satisfy the following
conditions (up to a numeration):

(1) ρ3 = 2c̃,

(2) ρ1 = ρ2 everywhere.

We are not interested in the case when (M, g) is a space of constant curvature and therefore we
assume always ρ1 = ρ2 , ρ3.

If c̃ = 0, and hence F = 0, we obtain a definition of semi-symmetric space. The theory of
semi-symmetric spaces has been developed in [20], [21], [22], [10], [7], [1], [2] and especially
in the book [3]. For the three-dimensional case, see the explicit classification in [10], [7] and [3,
Chapter 6]. We exclude this case from our considerations.

For c̃ , 0, the present authors made an explicit classification in [15] for so-called “asymptoti-
cally foliated” (or “non-elliptic”) spaces in dimension three. They left aside a number of singular
cases. (See Section 4 for the terminology). In [16] they treated the more complicated “elliptic”
spaces in the full generality. The aim of this paper is two-fold:

a) To complete the classification in [15] by singular cases and to unify the notation used there
separately for c̃ < 0 and c̃ > 0.

b) To join the study of non-elliptic spaces and elliptic spaces in one comprehensive article.

A computer check (the software “Mathematica” by Wolfram Research Inc.) was also used
during this work.

1 The basic system of partial differential equations for the problem

Let (M, g) be a three-dimensional Riemannian manifold whose Ricci tensor R̂ has eigenvalues ρ1 =

ρ2 , ρ3 with nonzero constant ρ3. Choose a neighborhood Ũ of a fixed point m ∈ M and a
smooth vector field E3 of unit eigenvectors corresponding to the Ricci eigenvalue ρ3 in Ũ. Let
S : D2 → Ũ be a surface through m which is transversal with respect to all trajectories generated
by E3 at all cross-points and not orthogonal to such a trajectory at m. (The vector field E3 determines
an orientation of S ). Then there is a normal neighborhood U of m, U ⊂ Ũ, with the property that
each point p ∈ U is projected to exactly one point π(p) ∈ S via some trajectory. We fix any local
coordinate system (w, x) on S and then a local coordinate system (w, x, y) on U such that the values
w(p) and x(p) are defined as w(π(p)) and x(π(p)), respectively, for each point p ∈ U, y(p) is the
oriented length d+(π(p), p) of the trajectory joining p with π(p). Then E3 = ∂/∂y can be extended
in U to an orthonormal moving frame {E1, E2, E3}. Let {ω1, ω2, ω3} be the corresponding dual
coframe. Then ωi’s are of the form

(1.1)


ωi = aidw + bidx, i = 1, 2,

ω3 = dy + Hdw +Gdx.

The Ricci tensor R̂ expressed with respect to {E1, E2, E3} has the form R̂i j = ρiδi j. Because each
ρi is expressed through the sectional curvature Ki j by the formula ρi = R̂ii =

∑
j,i Ki j, there exist a
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function k = k(w, x, y) of the variables w, x and y, and a constant c̃ such that

(1.2)


K12 = k, K13 = K23 = c̃,

ρ1 = ρ2 = k + c̃, ρ3 = 2c̃.

Define now the components ωi
j of the connection form by the standard formulas

(1.3)


dωi −∑

j ω
j ∧ ωi

j = 0,

ωi
j + ω

j
i = 0, i, j = 1, 2, 3.

Because the Riemannian curvature tensor satisfies Ri jkl = 0 whenever at least three of the indices
i, j, k and l are distinct, the formulas (1.2) are equivalent to

(1.4)


dω1

2 + ω
1
3 ∧ ω3

2 = kω1 ∧ ω2,

dω1
3 + ω

1
2 ∧ ω2

3 = c̃ω1 ∧ ω3,

dω2
3 + ω

2
1 ∧ ω1

3 = c̃ω2 ∧ ω3.

Next, differentiate the equations (1.4) and substitute from (1.4). We obtain easily

(1.5) ω1
3 ∧ ω1 ∧ ω2 = 0, ω2

3 ∧ ω1 ∧ ω2 = 0

and

(1.6) d((k − c̃)ω1 ∧ ω2) = 0.

The relations (1.5) mean that ω1
3 and ω2

3 are linear combinations of ω1 and ω2 only, and from the
third equation of (1.3) it follows that dω3 is a multiple of ω1 ∧ ω2 i.e., a multiple of dw ∧ dx. Then
(1.1) implies that the functions G and H are independent of y.

Now, there is a local coordinate system (w̄, x̄, y) (possibly in a smaller neighborhood of m) such
that w̄ = w̄(w, x) and x̄ = x̄(w, x) are functions of w and x, and

(1.7)


ω1 = P1dw̄ + Q1dx̄,

ω2 = P2dw̄ + Q2dx̄,

ω3 = dy + H̄(w̄, x̄)dw̄.

Indeed, because the surface S is not orthogonal to the vector field E3 at m, the Pfaffian form Hdw+
Gdx from (1.1) is nonzero in a neighborhood of m in M. Then we define w̄ = w̄(w, x) as a potential
function of the Pfaffian equation Hdw + Gdx = 0, and the second function x̄ = x̄(w, x) can be
defined as an arbitrary smooth function which is functionally independent of w̄. In addition, there
are new Pfaffian forms ω̃1 and ω̃2 such that (ω̃1)2 + (ω̃2)2 = (ω1)2 + (ω2)2 and ω̃1 does not involve
the differential dx̄. We can summarize:
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Proposition 1.1. In a normal neighborhood of any point m ∈ M there exist an orthonormal coframe
{ω1, ω2, ω3} and a local coordinate system (w, x, y) such that

(1.8)


ω1 = f dw,

ω2 = Adx +Cdw,

ω3 = dy + Hdw.

Here f , A and C are smooth functions of the variables w, x and y, f A , 0, and H is a smooth
function of the variables w and x.

The formula (1.6) can be now written in the form

(1.9) ((k − c̃) f A)′y = 0, i.e., k − c̃ = σ
f A

for some nonzero function σ = σ(w, x).
Now, define the function χ = χ(w, x, y) of the variables w, x and y by

(1.10) χ = 1
f A
=

k − c̃
σ

.

Then, using (1.8) and (1.10), we obtain easily the following expression for the components of the
connection form:

(1.11)


ω1

2 = −Aαdx + Rdw + βdy,

ω1
3 = Aβdx + S dw,

ω2
3 = A′ydx + Tdw,

where

(1.12)


α = χ(A′w −C′x − HA′y),

β =
χ

2
(H′x + AC′y −CA′y)

and

(1.13)


R = χ f f ′x −Cα + Hβ,

S = f ′y +Cβ,

T = C′y − fβ.

The curvature conditions (1.4) then give a system of nine partial differential equations for our prob-
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lem:

(Aα)′y + β
′
x = 0,(A1)

R′y − β′w = 0,(A2)

(Aα)′w + R′x + S A′y − AβT = − f Ak,(A3)

A′′yy − Aβ2 = −c̃A,(B1)

− A′′yw + T ′x + A(βR + αS ) = c̃AH,(B2)

T ′y − S β = −c̃C,(B3)

(Aβ)′y + A′yβ = 0,(C1)

S ′x − (Aβ)′w − (AαT + A′yR) = 0,(C2)

S ′y + Tβ = −c̃ f .(C3)

2 The first integrals and the reduction of the basic system of partial
differential equations

The aim of this section is to replace the partial differential equations of the series (B) and (C) by a
system of algebraic equations for the new functions depending only on the variables w and x.

First of all, we can eliminate (B2) and (C2) by the same procedure as in [11]: the equation (B2)
is a consequence of (A1) and (B1); the equation (C2) is a consequence of (A1), (A2) and (C1).
Moreover, Proposition 2.3 from [11] still holds (with a slight change of the notation). We have

Proposition 2.1. The equations (B3) and (C3) are satisfied if and only if

(2.1) f T −CS = φ0,

where φ0 = φ0(w, x) is an arbitrary function of the variables w and x. Moreover, we have, in the
hyperbolic case c̃ = −λ2,

(2.2h) S 2 + T 2 = λ[φ1 cosh(2λy) + φ2 sinh(2λy) − φ3],

(2.3h) f S +CT = φ2 cosh(2λy) + φ1 sinh(2λy),

(2.4h) f 2 +C2 =
1
λ

[φ1 cosh(2λy) + φ2 sinh(2λy) + φ3],

where the functions φi = φi(w, x), i = 1, 2, 3, of the variables w and x satisfy the single relation

(2.5h) φ0
2 + φ2

2 − (φ1
2 − φ3

2) = 0

and in the elliptic case c̃ = λ2,

(2.2e) S 2 + T 2 = λ[φ1 cos(2λy) − φ2 sin(2λy) + φ3],

(2.3e) f S +CT = φ2 cos(2λy) + φ1 sin(2λy),
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(2.4e) f 2 +C2 =
1
λ

[−φ1 cos(2λy) + φ2 sin(2λy) + φ3],

where the functions φi = φi(w, x), i = 1, 2, 3, of the variables w and x satisfy the single relation

(2.5e) φ0
2 + φ2

2 + φ1
2 − φ3

2 = 0.

Proposition 2.2. From the equations (A1), (A2), (B1), (C1) and (C3), we have, in the hyperbolic
case,

(2.6h) f A = f1 cosh(2λy) + f2 sinh(2λy) + f3

and, in the elliptic case,

(2.6e) f A = f1 cos(2λy) + f2 sin(2λy) + f3,

where fi = fi(w, x), i = 1, 2, 3, are some functions of the variables w and x.
There is a function φ4 = φ4(w, x) of the variables w and x such that, in the hyperbolic case,

(2.7h) S A = λ f2 cosh(2λy) + λ f1 sinh(2λy) + φ4

and, in the elliptic case,

(2.7e) S A = λ f2 cos(2λy) − λ f1 sin(2λy) + φ4.

Further, the equation (A3) is reduced to the equation

(2.8) (Aα)′w + R′x + τ = 0,

where

(2.9) τ = (S A)′y + f A ρ1

is a function of the variables w and x.

Proof. From (C3) we obtain, using also (1.13),

(2.10) (S A)′y = S A′y − AβT − c̃ f A = f ′y A′y + β(CA′y − AC′y) + f (Aβ2 − c̃A).

Due to (B1) we obtain

(2.11) (S A)′y = f ′y A′y + A′′yy f + β(CA′y − AC′y) = (A′y f )′y + β(CA′y − AC′y).

On the other hand, using (1.13) first and (C1) later, we get

(2.12) (S A)′y = [ f ′y A + (Aβ)C]′y = ( f ′y A)′y − β(CA′y − AC′y).

As the sum of (2.11) and (2.12) we obtain

(2.13) 2(S A)′y = ( f A′y)′y + ( f ′y A)′y = ( f A)′′yy.

Using (A1) and (A2), we obtain

(2.14) [(Aα)′w + R′x]′y = 0.

6



Due to (2.10), (1.10) and ρ1 = k + c̃, the equation (A3) takes in the form

(2.15) (Aα)′w + R′x + (S A)′y + f A ρ1 = 0.

According to (2.14), the function τ defined by (2.9) does not depend on y. This together with (2.15)
implies (2.8). Also, the equations (2.13) and (2.9) imply

(2.16) ( f A)′′yy + 2 f A ρ1 = 2τ.

Substituting (1.10) and ρ1 = k + c̃ into (2.16), we obtain

(2.17)
(

σ
k − c̃

)′′
yy
+

2(k + c̃)σ
k − c̃

− 2τ = 0.

Because σ does not depend on y, putting

(2.18) F = 1
k − c̃

− τ − σ
2c̃σ

,

we obtain

(2.19) F′′yy + 4c̃F = 0.

Moreover we get, from (2.18) and (1.10),

(2.20) f A = Fσ + f3,

where f3 = f3(w, x) is an arbitrary function of the variables w and x.
The general solution of the partial differential equation (2.19) is, in the hyperbolic case,

(2.21h) F = F1 cosh(2λy) + F2 sinh(2λy)

and, in the elliptic case,

(2.21e) F = F1 cos(2λy) + F2 sin(2λy),

where F1 = F1(w, x) and F2 = F2(w, x) are arbitrary functions of the variables w and x. This
together with (2.20) implies (2.6h) and (2.6e).

From (2.6he) and (2.13) we obtain (2.7he), respectively.

Proposition 2.3. The equation (B1) and (C1) are satisfied if and only if

(2.22) βA2 = λa0,

where a0 = a0(w, x) is an arbitrary function and, moreover, we have
(a) in the hyperbolic case,

(2.23h) A2 = a1 cosh(2λy) + a2 sinh(2λy) + a3,

where ai = ai(w, x), i = 1, 2, 3, are functions of the variables w and x satisfying

(2.24h) a0
2 + a2

2 − (a1
2 − a3

2) = 0;

(b) in the elliptic case,

(2.23e) A2 = a1 cos(2λy) + a2 sin(2λy) + a3,

where ai = ai(w, x), i = 1, 2, 3, are functions of the variables w and x satisfying

(2.24e) a0
2 + a2

2 + a1
2 − a3

2 = 0.
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The proof is the same as for Proposition 2.5 in [11] (with a slight change of the notation).

Proposition 2.4. We have, in the hyperbolic case,

(2.25h)

2λa0AC = [a1φ5 + 2λ(a2 f3 − a3 f2)] cosh(2λy)

+ [a2φ5 − 2λ(a3 f1 − a1 f3)] sinh(2λy)

+ a3φ5 − 2λ(a2 f1 − a1 f2)

and, in the elliptic case,

(2.25e)

2λa0AC = [a1φ5 + 2λ(a2 f3 − a3 f2)] cos(2λy)

+ [a2φ5 + 2λ(a3 f1 − a1 f3)] sin(2λy)

+ a3φ5 + 2λ(a2 f1 − a1 f2),

where φ5 = φ5(w, x) is an arbitrary function of the variables w and x.

Proof. Subtracting equations (2.11) and (2.12), we get

( f A′y − f ′y A)′y + 2β(A′yC − AC′y) = 0,

that is,

( f A′y − f ′y A)′y = 2βA2 AC′y − A′yC

A2 .

Using (2.22), we get

(2.26) ( f A′y − f ′y A)′y = 2λa0

(
C
A

)′
y
.

Integrating (2.26) with respect to y and multiplying by A3, we get

(2.27) 2λa0AC = φ5A2 + ( f A)(A2)′y − A2( f A)′y,

where φ5 = φ5(w, x) is an arbitrary function of the variables w and x. Substituting (2.6he) and
(2.23he) into (2.27), we obtain our assertion, respectively.

The following proposition is more explicit.

Proposition 2.5. We have, in the hyperbolic case,

(2.28h) AC = b1 cosh(2λy) + b2 sinh(2λy) + b3

and, in the elliptic case,

(2.28e) AC = b1 cos(2λy) + b2 sin(2λy) + b3,

where bi = bi(w, x), i = 1, 2, 3, are functions of the variables w and x.
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Proof. For a0 , 0, the assertion (2.28he) is a direct consequence of (2.25he), respectively.
Suppose now c̃ = ϵλ2, ϵ = ±1, and a0 = 0. Then β = 0 by (2.22) and we get from (1.13)3 and

(B3) that

C′′yy = −c̃ C = −ϵλ2C.

Hence we get, in the hyperbolic case,

(2.29h) C = r cosh(λy) + s sinh(λy)

and, in the elliptic case,

(2.29e) C = r cos(λy) + s sin(λy),

where r = r(w, x) and s = s(w, x) are arbitrary functions of the variables w and x. On the other
hand, (2.23he) and (2.24he) with a0 = 0 imply, in the hyperbolic case,

(2.30h) A = p cosh(λy) + q sinh(λy)

and, in the elliptic case,

(2.30e) A = p cos(λy) + q sin(λy)

with some functions p = p(w, x) and q = q(w, x) of the variables w and x. Hence (2.28he) follows.

Remark. We denote sgn c̃ by ϵ in the sequel. This notation will be used later to unify many
formulas for the hyperbolic and the elliptic case.

Now we introduce the function h = h(w, x) by

(2.31) h = H′x.

Proposition 2.6. We have

(2.32)


ha1 = 2λ[a0 f1 + a2b3 − a3b2],

ha2 = 2λ[a0 f2 + ϵ(a3b1 − a1b3)],

ha3 = 2λ[a0 f3 − (a1b2 − a2b1)].

Proof. From (1.12)2 we get

h = 2 f A β − (AC)′y + 2A′yC.

Then (2.22) and (1.10) imply

(2.33) hA2 = 2λa0 f A − A2(AC)′y + (AC)(A2)′y.

Now we use (2.6he), (2.23he) and (2.28he) to get (2.32he).
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From (2.21he), (1.10) and (2.1) we obtain

(2.34) S = fχQ, T = CχQ + φ0χA,

where, in the hyperbolic case,

(2.35h) Q = λ f2 cosh(2λy) + λ f1 sinh(2λy) + φ4

and, in the elliptic case,

(2.35e) Q = λ f2 cos(2λy) − λ f1 sin(2λy) + φ4.

Substituting from (2.34) into the partial differential equation (C3), we obtain, using also (2.22),(
fχQ′y −

A′y
A2 Q

)
A2 + λa0CχQ + λa0φ0χA = −c̃ f A2.

Multiplying this equation by A and using (2.27) and (1.10), we get

(2.36) 2 f AQ′y + φ5Q − Q( f A)′y + 2λa0φ0 + 2c̃( f A)2 = 0.

Substituting from (2.6he) and (2.35he) into (2.36), we obtain

(2.37)


f1(φ5 − 2φ4) = 0, f2(φ5 − 2φ4) = 0,

φ4φ5 + 2λa0φ0 − 2λ2[ f22 + ϵ( f12 − f32)] = 0.

Substituting (2.35he) into (2.34), we obtain, in the hyperbolic case,

(2.38h) S = fχ[λ f2 cosh(2λy) + λ f1 sinh(2λy) + φ4],

(2.39h) T = Cχ[λ f2 cosh(2λy) + λ f1 sinh(2λy) + φ4] + φ0χA

and, in the elliptic case,

(2.38e) S = fχ[λ f2 cos(2λy) − λ f1 sin(2λy) + φ4],

(2.39e) T = Cχ[λ f2 cos(2λy) − λ f1 sin(2λy) + φ4] + φ0χA.

Hence we obtain, in the hyperbolic case,

(2.40h) f A(CT + f S ) = φ0AC + [λ f2 cosh(2λy) + λ f1 sinh(2λy) + φ4]( f 2 +C2)

and, in the elliptic case,

(2.40e) f A(CT + f S ) = φ0AC + [λ f2 cos(2λy) − λ f1 sin(2λy) + φ4]( f 2 +C2).

Substituting (2.3he), (2.4he) and (2.6he) into (2.40he), we get in the hyperbolic case,

(2.41h)

φ0AC = ( f3φ2 − f2φ3 − 1
λ
φ1φ4) cosh(2λy)

+ ( f3φ1 − f1φ3 − 1
λ
φ2φ4) sinh(2λy)

+ f1φ2 − f2φ1 − 1
λ
φ3φ4
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and, in the elliptic case,

(2.41e)

φ0AC = ( f3φ2 − f2φ3 +
1
λ
φ1φ4) cos(2λy)

+ ( f3φ1 + f1φ3 − 1
λ
φ2φ4) sin(2λy)

+ f1φ2 + f2φ1 − 1
λ
φ3φ4.

Another consequence of (2.38he) and (2.39he) is, in the hyperbolic case,

(2.42h)

( f A)2(S 2 + T 2)

= [λ2 f22 cosh2(2λy) + λ2 f12 sinh2(2λy) + 2λ2 f1 f2 cosh(2λy) sinh(2λy)

+ 2λ f2φ4 cosh(2λy) + 2λ f1φ4 sinh(2λy) + φ4
2]( f 2 +C2)

+ 2φ0AC[λ f2 cosh(2λy) + λ f1 sinh(2λy) + φ4] + φ0
2A2

and, in the elliptic case,

(2.42e)

( f A)2(S 2 + T 2)

= [λ2 f22 cos2(2λy) + λ2 f12 sin2(2λy) − 2λ2 f1 f2 cos(2λy) sin(2λy)

+ 2λ f2φ4 cos(2λy) − 2λ f1φ4 sin(2λy) + φ4
2]( f 2 +C2)

+ 2φ0AC[λ f2 cos(2λy) − λ f1 sin(2λy) + φ4] + φ0
2A2.

Using the formulas (2.2he), (2.4he), (2.6he), (2.23he) and (2.41he), we obtain from (2.42he)

(2.43)



λφ0
2a1 = φ1[λ2( f12 − ϵ f22 + f32) − ϵφ4

2]

+ 2λ2 f1(ϵ f3φ3 − f2φ2) + 2λφ4( f2φ3 − f3φ2),

λφ0
2a2 = ϵφ2[λ2( f12 − ϵ f22 − f32) + ϵφ4

2]

+ 2λ2 f2( f1φ1 + ϵ f3φ3) − 2λφ4( f3φ1 + ϵ f1φ3),

λφ0
2a3 = ϵφ3[λ2( f12 + ϵ f22 + f32) + ϵφ4

2]

+ 2λ2 f3( f1φ1 − f2φ2) − 2λφ4( f1φ2 + ϵ f2φ1).

Consider now the identity (AC)2 = A2( f 2 + C2) − (A f )2. Substituting from (2.4he), (2.6he),
(2.23he) and (2.28he), we get a system of quadratic equations

(2.44)



λ(b1
2 − ϵb2

2 + f12 − ϵ f22) = −ϵ(a1φ1 + a2φ2),

λ(b1
2 + ϵb2

2 + 2b3
2 + f12 + ϵ f22 + 2 f32) = −ϵ(a1φ1 − a2φ2) + 2a3φ3,

2λ(b1b2 + f1 f2) = a1φ2 − ϵa2φ1,

2λ(b1b3 + f1 f3) = a1φ3 − ϵa3φ1,

2λ(b2b3 + f2 f3) = a2φ3 + a3φ2.
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In the notation (2.28he) we can rewrite (2.25he) in the form

(2.45)


2λa0b1 = a1φ5 + 2λ(a2 f3 − a3 f2),

2λa0b2 = a2φ5 + 2ϵλ(a3 f1 − a1 f3),

2λa0b3 = a3φ5 − 2λ(a1 f2 − a2 f1).

Also, we can rewrite (2.41he) in the form

(2.46)


λφ0b1 = −λ( f2φ3 − f3φ2) + ϵφ1φ4,

λφ0b2 = λ( f3φ1 + ϵ f1φ3) − φ2φ4,

λφ0b3 = λ( f1φ2 + ϵ f2φ1) − φ3φ4.

Proposition 2.7. If a0 , 0, then we have

(2.47) h = − 2λ[ϵ(a1 f1 − a3 f3) + a2 f2]
a0

.

Proof. The assertion follows from (2.32), (2.45) and (2.24he).

Now we have the main results of this section.

Theorem 2.8. Let λ be a positive constant. Let φ0, φ1, . . . , φ5, a0, a1, a2, a3, b1, b2, b3, f1, f2, f3
and h be functions of two variables w and x defined in some domain V ⊂ R2(w, x), satisfying eight
collections of algebraic equations (2.5), (2.24), (2.32), (2.37)2, (2.43), (2.44), (2.45) and (2.46)
(either of hyperbolic type, or of elliptic type) with the corresponding parameter λ, and such that
a1

2 + a2
2 + a3

2 > 0 in V.
Let A, f , C and H be functions defined in a domain U ⊂ R3(w, x, y), where A , 0, by the

formulas (2.23), (2.6), (2.28) and (2.31) of the corresponding type, and let the metric g be defined
on U by (1.8). Further, let α, β and R be defined as in (1.12)1, (2.22), (1.13)1. Then the curvature
conditions (1.4) are satisfied for some function k = k(w, x, y) of the variables w, x and y, and for the
corresponding constant c̃ = ±λ2 if and only if the system of partial differential equations (A1) and
(A2) is satisfied.

Proof. The assertion follows from the whole series of propositions and formulas given in this sec-
tion.

Remark. Because we do not prescribe the function k = k(w, x, y) in advance, the equation (A3)
(or, equivalently, (2.8)) does not give any additional condition. But, due to (2.9) and (1.2), the
equation (2.8) can be considered just as a formula for calculating the Ricci eigenvalue ρ1 or the
scalar curvature Sc(g) = 2k + 4c̃ of (M, g).

Remark. The algebraic conditions mentioned above are, of course, far from being independent,
but they are all useful.

We conclude this section by proving additional algebraic equations between our basic functions.
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Proposition 2.9. We have

(2.48) φ5 = 2φ4,

(2.49) φ0A2 − λa0( f 2 +C2) + φ5AC + h f A = 0.

Proof. If f12 + f22 , 0, then (2.48) follows from (2.37)1,2. If f1 = f2 = 0, then we proceed as in the
proof of Proposition 4.1 in [11].

To derive (2.49), we rewrite (2.37) using (2.48) in the form

(2.50) λa0φ0 = λ
2[ f22 + ϵ( f12 − f32)] − φ4

2.

Suppose a0 , 0. Then (2.45) and (2.48) imply

(2.51)



b1 =
a1φ4 + λ(a2 f3 − a3 f2)

λa0
,

b2 =
a2φ4 + ϵλ(a3 f1 − a1 f3)

λa0
,

b3 =
a3φ4 − λ(a1 f2 − a2 f1)

λa0
.

Now we substitute for A2, f 2 + C2, AC, φ5, h and f A of the left-hand side of (2.49) from (2.23he),
(2.4he), (2.28he), (2.48) and (2.6he), respectively. Then the identity (2.49) follows. If a0 = 0, we
use the direct check as in [11].

Proposition 2.10. The following algebraic formulas hold

(2.52) 2λ(a1 f1 + ϵa2 f2 − a3 f3) = −ϵa0h,

(2.53) 4λ2(b1 f1 + ϵb2 f2 − b3 f3) = −ϵφ5h,

(2.54) 2λ(φ1 f1 − φ2 f2 − φ3 f3) = ϵφ0h,

(2.55) 2λ(a1b1 + ϵa2b2 − a3b3) = −ϵa0φ5.

Proof. From (2.24he) and (2.32) we obtain

2λa0(a1 f1 + ϵa2 f2 − a3 f3) = −ϵa0
2h.

Hence we obtain (2.52) if a0 , 0. From (2.45) and (2.24he) we obtain

2λa0(b1 f1 + ϵb2 f2 − b3 f3) = φ5(a1 f1 + ϵa2 f2 − a3 f3),

which together with (2.52) implies (2.53) when a0 , 0. From (2.46) we obtain

φ4(φ1 f1 − φ2 f2 − φ3 f3) = −λφ0(b1 f1 + b2 f2 − b3 f3),

hence, if a0φ4 , 0, we obtain (2.54) using (2.53) and (2.48). Finally from (2.45) we obtain

2λa0(a1b1 + ϵa2b2 − a3b3) = −ϵa0
2φ5.

Thus we obtain (2.55) when a0φ4 , 0.
For a0φ4 = 0 we use the continuity argument or a rather lengthy direct check (cf. Proposi-

tion 4.10 in [10]).
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3 The Riemannian invariants

Let (M, g) be given locally as in Proposition 1.1. We rewrite the formulas (1.11) using the forms
ω1, ω2 and ω3 as a basis. It follows

(3.1)



ω1
2 = χ f ′x ω

1 − αω2 + βω3,

ω1
3 =

f ′y
f
ω1 + βω2,

ω2
3 = (β − hχ)ω1 +

A′y
A

ω2, h = H′x.

We also write, for brevity,

(3.2) ω1
3 = aω1 + bω2, ω2

3 = cω1 + eω2,

where

(3.3) a =
f ′y
f
, b = β, c = β − hχ, e =

A′y
A
.

Using the standard formula ∇E j Ei =
∑

k ω
k
i (E j)Ek, i, j = 1, 2, 3, from [8], we obtain

(3.4)



∇E1 E1 = −χ f ′x E2 − aE3, ∇E1 E2 = χ f ′x E1 − cE3,

∇E2 E1 = αE2 − bE3, ∇E2 E2 = −αE1 − eE3,

∇E1 E3 = aE1 + cE2, ∇E2 E3 = bE1 + eE2,

∇E3 E1 = −bE2, ∇E3 E2 = bE1,

∇E3 E3 = 0.

The last formula shows that the trajectories of the unit vector field E3 (consisting of the eigenvectors
of the Ricci tensor R̂ corresponding to ρ3 = 2c̃) are geodesics.

For the Ricci tensor R̂ we get, using the notation (1.2) and the adapted local orthonormal
coframe {ω1, ω2, ω3},

(3.5) R̂ = (k + c̃)(ω1 ⊗ ω1 + ω2 ⊗ ω2) + 2c̃ (ω3 ⊗ ω3).

Using (3.1), (3.2) and the standard formula ∇Xω
i = −∑

j ω
i
j(X)ω j, we obtain

(3.6)

∇R̂ = dk ⊗ (ω1 ⊗ ω1 + ω2 ⊗ ω2)

+ (c̃ − k){(aω1 + bω2) ⊗ (ω1 ⊗ ω3 + ω3 ⊗ ω1)

+ (cω1 + eω2) ⊗ (ω2 ⊗ ω3 + ω3 ⊗ ω2)},

where a, b, c and e are given by (3.3). Hence we also get

(3.7)
∥∇R̂∥2 = 2∥dk∥2 + 2(c̃ − k)2(a2 + b2 + c2 + e2)

= 2∥dρ1∥2 + 2(ρ1 − ρ3)2(a2 + b2 + c2 + e2).
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Because R̂ is a Riemannian invariant tensor, ∇R̂ is an invariant tensor. Also, because E3 = ∂/∂y
is uniquely determined by the geometry of (M, g) up to sign, ω3 ⊗ ω3 is an invariant tensor. Hence
we see from (3.5) and (3.6) that the tensor

(3.8)
Q = (aω1 + bω2) ⊗ (ω1 ⊗ ω3 + ω3 ⊗ ω1)

+ (cω1 + eω2) ⊗ (ω2 ⊗ ω3 + ω3 ⊗ ω2)

is also invariant. Now because E1 and E2 are determined up to an orthogonal transformation (with
functional coefficients), the functions

(3.9)


Q(E1, E1, E3) + Q(E2, E2, E3) = a + e,

Q(E2, E1, E3) − Q(E1, E2, E3) = b − c

are Riemannian invariants up to sign.
The square of the norm ∥Q∥2 = 2(a2 + b2 + c2 + e2) is a Riemannian invariant and hence

(equivalently) ae − bc is a Riemannian invariant. We summarize:

Proposition 3.1. The function ae−bc is a Riemannian invariant, and a+e and b−c are Riemannian
invariants up to sign (i.e., depending on the orientation of the principal geodesics). Further, the
partial derivative of any Riemannian invariant with respect to y is a Riemannian invariant up to
sign.

Using (1.10), we get

(3.10)


a + e = (ln( f A))′y = −(ln(k − ϵλ2))′y,

b − c = hχ =
h(k − ϵλ2)

σ
.

Further we have

(3.11) ae − bc = ϵ(2λ2 f3χ − λ2).

The last formula is obtained by lengthy calculations using (2.52) and the obvious identities

(3.12) (AA′y)2 + λ2a0
2 = −ϵλ2[(A2 − a3)2 − a2

3],

(3.13) A3 f ′y = ( f A)′yA2 − ( f A)(AA′y).

Using (3.11) we see that, in the hyperbolic case,

(3.14h)
f A
f3
=

f1 cosh(2λy) + f2 sinh(2λy) + f3
f3

is a Riemannian invariant and, in the elliptic case,

(3.14e)
f A
f3
=

f1 cos(2λy) + f2 sin(2λy) + f3
f3

is a Riemannian invariant (assuming f3 , 0 everywhere). (According to (3.10)2, f A/h and f3/h are
then Riemannian invariants up to sign assuming h , 0 everywhere.)
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Next, we give some simple results concerning isometry of Riemannian manifolds with the Ricci
eigenvalues ρ1 = ρ2 and nonzero constant ρ3 to be used later. Let (M, g) be such a manifold with
the metric g given by (1.8) and let (M̄, ḡ) be another such manifold with the metric ḡ given by the
orthonormal coframe

ω̄1 = f̄ dw̄, ω̄2 = Ādx̄ + C̄dw̄, ω̄3 = dȳ + H̄dw̄.

Suppose that there is an isometry Φ : (M, g) −→ (M̄, ḡ) given by

(3.15) w̄ = w̄(w, x, y), x̄ = x̄(w, x, y), ȳ = ȳ(w, x, y).

Here we use w̄, x̄ and ȳ as simple notations for w̄ ◦ Φ, x̄ ◦ Φ and ȳ ◦ Φ, respectively, and we shall
also write simply ω̄i instead of Φ∗ω̄i for i = 1, 2, 3.

Propositions 5.2 and 5.3 from [10] still hold without change. We have:

Proposition 3.2. The equation (3.15) can be reduced to the form

w̄ = w̄(w, x), x̄ = x̄(w, x), ȳ = εy + ϕ(w, x), ε = ±1,

where ϕ = ϕ(w, x) is an arbitrary function of the variables w and x.

Proposition 3.3. Suppose β = a0 = 0 on (M, g) and β̄ = ā0 = 0 on (M̄, ḡ). Further, assume that
e2−a2 , 0 or c , 0 holds on (M, g). Then any isometry Φ : (M, g) −→ (M̄, ḡ) implies the equalities

ω̄i = εi ω
i, εi = ±1, i = 1, 2, 3.

4 The asymptotic foliations and four types of spaces

Recall that the principal geodesics are trajectories of the vector field E3. We introduce two basic
definitions.

Definition 4.1. A smooth surface N ⊂ (M, g) is called an asymptotic leaf if it is generated by the
principal geodesics and its tangent planes are parallel along these principal geodesics with respect
to the Levi-Civita connection ∇ of (M, g).

Definition 4.2. An asymptotic distribution on M is a two-dimensional distribution which is inte-
grable and whose integral manifolds are asymptotic leaves. The integral manifolds of an asymptotic
distribution determine a foliation of M, which is called an asymptotic foliation.

Let N be an asymptotic leaf. Then its tangent planes along N can be described by

(4.1) sinφω1 + cosφω2 = 0,

where φ is a smooth function on N. By the same argument as in [10], we see that, according to the
integrability condition and the asymptoticity condition, the tangent distribution of N satisfies

(4.2) b sin2 φ + (e − a) cosφ sinφ − c cos2 φ = 0

and hence

(4.3) c(ω1)2 + (e − a)ω1ω2 − b(ω2)2 = 0,
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where a, b, c and e are given by (3.3). Of course, an asymptotic distribution must satisfy these
equations locally on the whole of M. Conversely, any smooth distribution satisfying (4.3) is an
asymptotic distribution. For the details of the proof see Section 6 in [10].

The following proposition is almost obvious.

Proposition 4.3. Let ∆ = (e − a)2 + 4bc be the discriminant of the quadratic equation (4.3). Then
we have:

(E) If ∆ < 0 on (M, g), then there is no real asymptotic distribution on M.

(H) If ∆ > 0 on (M, g), then there are exactly two different asymptotic distributions
on M.

(P) If ∆ = 0 on (M, g) and some of the functions e − a, b and c are nonzero at each
point, then there is a unique asymptotic distribution on M.

(Pℓ) If e − a = b = c = 0 on M, then any π-projectable smooth two-dimensional
distribution on M is asymptotic, where π is the projection π : (w, x, y) 7−→ (w, x).

Definition 4.4. A space (M, g) is said to be of type (E), (H), (P) or (Pℓ), respectively, (called also
elliptic, hyperbolic, parabolic and planar type, respectively) if the corresponding case of Proposi-
tion 4.3 holds on the whole of M.

Corollary 4.5. The space (M, g) is of type (Pℓ) if and only if f = ξA, C = ζA and β = 0, where
ξ = ξ(w, x) , 0 and ζ = ζ(w, x) are arbitrary functions of the variables w and x. Assuming β = 0,
(M, g) is of type (P) if and only if f = ξA and h , 0.

Proof. The relation e − a = 0 means ( f /A)′y = 0, b = 0 means β = 0, and c = 0 means h = 0. Due
to (1.12)2, β = h = 0 means (C/A)′y = 0. Hence the first part of the Proposition follows. Further,
if (M, g) is of type (P), then (4.3) with b = 0 must be reduced to c(ω1)2 = 0, i.e., e − a = 0 and
h = −c , 0. Hence the second part follows.

In the following two sections we are going to describe explicitly all spaces of all types (E), (H),
(P) and (Pℓ) in both hyperbolic case (c̃ < 0) and elliptic case (c̃ > 0). Because we are interested
in the local classification, we investigate only the “pure” cases and not the combined ones in the
sequel. (For a global treatment of some of our geometric types see [21]).

We add some more details:

Proposition 4.6. The equation (4.3) is equivalent with the equation

(4.4) λa0dx2 + φ5dxdw − φ0dw2 = 0.

Proof. We can apply the same procedure as in [10] (Proof of Theorem 6.5). Here we use formulas
(2.49) and (2.27) for this purpose.

Hence we can decide about the type of the space (M, g) according to the following

Proposition 4.7. Let ∆′ = φ5
2 + 4λa0φ0 be the discriminant of the quadratic equation (4.4). Then

the analogy of Proposition 4.3 holds if ∆ is replaced by ∆′.
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Proof. One can show easily that ∆′ = ( f A)2∆.

Also, notice that ∆′ is given alternatively by the formula

(4.5) ∆′ = 4λ2[ f22 + ϵ( f12 − f32)].

Indeed, combining (2.37)3 with (2.48), we obtain at once

(4.6) φ5
2 + 4λa0φ0 − 4λ2[ f22 + ϵ( f12 − f32)] = 0.

Now, the following Theorem will be crucial for the explicit geometric classification of the mani-
folds of types (H), (P) and (Pℓ) in Section 5. Its proof is analogous to that of Theorem 6.6 from
[10].

Theorem 4.8. For each manifold of types (H) and (P), there exists a transformation of local coor-
dinates preserving the form (1.8) of the metric and annihilating the functions β and a0.

Remark. As concerns the type (Pℓ), we have β = 0 and hence a0 = 0 (in a neighborhood of p)
by definition. Thus for every space (M, g) of type (H), (P) or (Pℓ) we can assume β = a0 = 0.
Conversely, from (4.3) or (4.4) we see that β = a0 = 0 always implies that (M, g) is one of the types
(H), (P) and (Pℓ).

In this final part of this Section we prove some geometric results on asymptotic foliations.
Propositions 6.10 and 6.11 from [10] still hold without change. We have:

Proposition 4.9. If h = 0, then (M, g) is of type (H), (P) or (Pℓ). On a space of type (H), h = 0
means that the asymptotic foliations F1 and F2 are mutually orthogonal.

Proof. The relation h = 0 means b = c and hence (e − a)2 + 4bc ≥ 0. In the type (H), the equation
(4.2) means 2b cos(2φ) + (a − e) sin(2φ) = 0. Hence if φ characterizes one of the asymptotic
foliations, then φ + π/2 characterizes the second one. From (4.1) we see that both foliations are
mutually orthogonal.

Proposition 4.10. Let the metric g be of one of the types (H), (P) and (Pℓ) expressed in such a
coordinate system that β = a0 = 0. If α = 0, then at least one of the asymptotic foliations is totally
geodesic.

Proof. Because b = 0, formulas (3.4) show that span{E2, E3} is an asymptotic distribution. But the
corresponding asymptotic foliation is totally geodesic if and only if ∇E2 E2 ∈ span{E2, E3}, that is
α = 0.

5 The explicit classification of asymptotically foliated spaces

In this section we shall explicitly classify all spaces of types (H), (P) and (Pℓ). Moreover, we shall
answer the question how the distinct locally isometry classes can be parameterized. In this section
we always assume β = a0 = 0, which is allowed by Theorem 4.8 (see Remark 4).

We shall start with some general results.
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Proposition 5.1. For types (H), (P) and (Pℓ), the coefficients A, C and f from (1.8) can be expressed,
in the hyperbolic case, by

(5.1h)


A = p cosh(λy) + q sinh(λy),

C = r cosh(λy) + s sinh(λy),

f = t cosh(λy) + u sinh(λy)

and, in the elliptic case, by

(5.1e)


A = p cos(λy) + q sin(λy),

C = r cos(λy) + s sin(λy),

f = t cos(λy) + u sin(λy),

where p, q, r, s, t and u are functions of the variables w and x such that

(5.2) λ(qr − ps) = h.

Moreover, if h , 0, we may assume h = 1 and H = x, and if h = 0 on an open subset, we may
assume H = 0 on this subset.

Proof. Because β = a0 = 0, the equation (B1) implies A′′yy = −ϵλ2A, and the equations (B3) and
(C3) together with (1.13) imply C′′yy = −ϵλ2C and f ′′yy = −ϵλ2 f , respectively. The formula (5.2)
follows from (1.12)2 and (5.1he) because h = H′x and β = 0.

It remains to prove the last part. If h , 0, then H′x , 0 and one can introduce the new variable
x̄ = H(w, x) instead of x. Then we get our orthonormal coframe in the standard form

ω1 = f dw, ω2 =
A
h

dx̄ +
(
C − AH′w

h

)
dw, ω3 = dy + x̄ dw.

Let now h = 0 on an open subset. Because H depends only on w, we get ω3 = dȳ, where

ȳ = y +
∫

H dw.

In the sequel we put

(5.3)


D = p′w − r′x − λqH,

E = q′w − s′x + ϵλpH.

(Thus E is different for the hyperbolic case and for the elliptic case.)

Proposition 5.2. The differential equation (A1) is satisfied if and only if the following equation
holds:

(5.4) u D − t E = 0.
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Proof. Substituting from (5.1he) into (1.12) we get, in the hyperbolic case,

(5.5h) Aα =
A′w −C′x − HA′y

f
=

D cosh(λy) + E sinh(λy)
t cosh(λy) + u sinh(λy)

and, in the elliptic case,

(5.5e) Aα =
A′w −C′x − HA′y

f
=

D cos(λy) + E sin(λy)
t cos(λy) + u sin(λy)

,

where D and E are given by (5.3). Because β = 0, the equation (A1) simply means that Aα does
not depend on y and hence (5.4) follows.

Proposition 5.3. Assume that (A1) is satisfied and

(5.6) Aα = ν, ν = ν(w, x).

Then (A2) is satisfied if and only if

(5.7) λ(qt′x − pu′x) = hν.

Proof. We have first, using (1.13)1 and (5.6), in the hyperbolic case,

R = χ f f ′x −Cα =
f ′x − νC

A

=
(t′x − rν) cosh(λy) + (u′x − sν) sinh(λy)

p cosh(λy) + q sinh(λy)

and, in the elliptic case,

R = χ f f ′x −Cα =
f ′x − νC

A

=
(t′x − rν) cos(λy) + (u′x − sν) sin(λy)

p cos(λy) + q sin(λy)
.

But the equation (A2) means that R does not depend on y, and (5.7) follows from (5.2).

Now we can state the “converse” of Proposition 5.1.

Proposition 5.4. Let p, q, r, s, t and u be arbitrary functions of the variables w and x. Define the
functions A, C and f by (5.1he), and let H = H(w, x) be any function satisfying

(5.8) H′x = h = λ(qr − ps).

If the equations (A1) and (A2) are satisfied, then (1.8) defines a foliated metric of type (H), (P) or
(Pℓ).

Proof. Substituting from (5.1he) and (5.8) into (1.12)2 we obtain β = 0. Hence, (B1) holds and
(C1) is trivially satisfied. Since (1.13)2,3 reduce to S = f ′y and T = C′y, respectively, (B3) and (C3)
hold as a consequence of (5.1he). From Section 2 we know that the equations (B2) and (C2) are
consequences of the other equations. As for the equation (A3), we can use Remark 2. Thus, the
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basic system of partial differential equations for the coefficients of (1.8) is reduced to the equations
(A1) and (A2). Because b = β = 0, Proposition 4.3 shows that the metric must be of one of the type
(H), (P) or (Pℓ).

Because b = β = 0, the equation (4.3) for an asymptotic distribution reads

(5.9) ω1(cω1 + (e − a)ω2) = 0

or, equivalently, by (3.3) and (1.12)2 together with β = 0,

(5.10) ω1
( C

A

)′
y
ω1 −

(
f
A

)′
y
ω2

 = 0.

We see that the equation ω1 = 0 defines an asymptotic distribution span{E2, E3}, whose integral
manifolds (the asymptotic leaves) are given by the equation w = constant. From (3.4) it follows
at once that this foliation is totally geodesic if and only if the function α from (1.12) vanishes
identically. We distinguish two geometric situations on the spaces of types (H) and (P). We say a
space of type (H) or (P) is singular or generic according to if the asymptotic distribution given by
the equation ω1 = 0 is totally geodesic or not; or, equivalently, according to if α = 0 or α , 0.

5.1 The non-orthogonally foliated spaces of type (H)

Suppose now that the space (M, g) is of type (H) and the asymptotic foliations F1 and F2 are
nowhere mutually orthogonal. From (5.10) we see that then necessarily ( f /A)′y , 0 and (C/A)′y , 0.
Using (5.1he) we see that this is equivalent with the inequalities pu − qt , 0 and ps − qr , 0.

Theorem 5.5. The metric of a three-dimensional non-orthogonally foliated generic space of type
(H) is locally determined, in the hyperbolic case, by an orthonormal coframe

(5.11h)


ω1 = [t cosh(λy) + u sinh(λy)]dw,

ω2 = [p cosh(λy) + q sinh(λy)]dx + [r cosh(λy) + s sinh(λy)]dw,

ω3 = dy + x dw

and, in the elliptic case, by an orthonormal coframe

(5.11e)


ω1 = [t cos(λy) + u sin(λy)]dw,

ω2 = [p cos(λy) + q sin(λy)]dx + [r cos(λy) + s sin(λy)]dw,

ω3 = dy + x dw,

where p, q, r and s are arbitrary functions of the variables w and x such that λ(ps − qr) = 1, and t
and u are calculated from p, q, r and s as follows:
Put (as a special case of (5.3))

(5.12) D = p′w − r′x − λqx, E = q′w − s′x + ϵλpx.
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If E , 0, then

(5.13a)


t = u D

E
,

u = exp
(

1
2

∫
P dx

) [∫
Q exp

(
−

∫
P dx

)
dx

]1/2

,

where

(5.14a) P =
2q(D′xE −DE′x)
E(q D − p E)

, Q = 2E2

λ(q D − p E)
.

If D , 0, then

(5.13b)


t = exp

(
1
2

∫
P̄ dx

) [∫
Q̄ exp

(
−

∫
P̄ dx

)
dx

]1/2

,

u = t E
D

,

where

(5.14b) P̄ =
2p(DE′x −D′xE)
D(q D − p E)

, Q̄ = 2D2

λ(q D − p E)
.

The local isometry classes of the metric (5.11he) are parameterized by three arbitrary functions of
two variables modulo two arbitrary functions of one variable.

Proof. According to the second part of Proposition 4.9 we have h , 0 and according to Proposi-
tion 5.1 we can assume H(w, x) = x and h = 1. Then (5.11he) follows from (5.1he) and (1.8). By
(5.5he), the condition α , 0 implies D , 0 or E , 0. Further we have q D− p E , 0, which follows
from (5.4) and a condition pu − qt , 0 for the non-orthogonal foliation.

In the following we will assume that E , 0. (The case D , 0 is completely analogous). We
express (5.4) in the form t = u D/E and substitute into (5.7). Here ν = E/u, which follows from
(5.5he) and (5.6). We obtain from (5.7) that

(5.15) (u2)′x − Pu2 = Q,

where P and Q are functions given by (5.14a). Finally, we can solve (5.15) by the standard method
of “variation of constants”. This proves the first part of Theorem 5.5.

We now prove the statement about the local isometry classes. Let (M, g) and (M̄, ḡ) be two
spaces with the metrics of the form (5.11he) and let Φ : M −→ M̄ be an isometry. We shall
denote the corresponding functions and forms for (M̄, ḡ) by bars and we make the usual conventions
(see the end of Section 3). Because b = 0 and h , 0, (3.10)2 implies c , 0 and we can use
Proposition 3.3. Let us assume, for simplicity, ε2 = ε3 = 1 (for the other signs, the argument is
similar). We get first ω̄1 = εω1 and hence there is a function φ = φ(w) of the variable w only such
that

(5.16) w̄ = φ, dw̄ = φ′dw.

22



The equation ω̄3 = ω3 means d(ȳ−y) = (x− x̄φ′)dw, i.e, there is a function ψ = ψ(w) of the variable
w only such that

(5.17) ȳ = y + ψ, x̄ =
x − ψ′
φ′

.

Finally, we substitute from (5.16) and (5.17) into the equation ω̄2 = ω2. Comparing the coefficients
of dx and dw, respectively, we obtain, in the hyperbolic case,

(5.18h)



p̄ = φ′[p cosh(λψ) − q sinh(λψ)],

q̄ = φ′[q cosh(λψ) − p sinh(λψ)],

r̄ =
r − px̄′wφ

′

φ′
cosh(λψ) − s − qx̄′wφ

′

φ′
sinh(λψ),

s̄ =
s − qx̄′wφ

′

φ′
cosh(λψ) − r − px̄′wφ

′

φ′
sinh(λψ),

where x̄′w can be calculated from (5.17)2. In the elliptic case we obtain analogous formulas (5.18e)
in which “cosh” and “ sinh ” are replaced by “cos” and “sin” respectively. Further, we always have
λ(q̄r̄ − p̄s̄) = λ(qr − ps) = 1. The formulas (5.16), (5.17) and (5.18he) show that the functions w̄, x̄,
ȳ, p̄, q̄, r̄, s̄, t̄ and ū can be expressed through w, x, y, p, q, r, s, t, u and the two arbitrary functions
φ and ψ of one variable. Thus each local isometry class depends on two arbitrary functions of one
variable.

This completes the proof.

Remark. The isometry part of Theorem 5.5 (and of some other theorems which follow) can be
stated more precisely using the concept of germs (cf. [18]).

Remark. In Theorem 11.38 of [3] the formulas (11.114) contain a misprint. The coefficients 2
should be in the numerators (not in the denominators) of the formulas for the both functions P and
Q.

Theorem 5.6. The metric of a three-dimensional non-orthogonally foliated singular space of type
(H) is locally determined, in the hyperbolic case, by an orthonormal coframe

(5.19h)


ω1 = [t cosh(λy) + u sinh(λy)]dw,

ω2 = [p cosh(λy) + (φ − p) sinh(λy)]dx + r[cosh(λy) − sinh(λy)]dw,

ω3 = dy + Hdw,

where φ = φ(w, x) is an arbitrary nonzero function of the variables w and x such that (ln |φ|)′′wx , 0
on an open set, and

p = 1
2
φ +

(ln |φ|)′′xx

λ2φ
− [(ln |φ|)′x]2

2λ2φ
+
ψ

φ
,

r =
(ln |φ|)′′wx

λ2φ
, H =

(ln |φ|)′w
λ

,

where ψ = ψ(x) is an arbitrary function of the variable x. Further, t can be chosen as an arbitrary

function of the variables w and x, and u =
∫

(φ/p − 1)t′x dx.
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Proof. The singularity condition α = 0 implies D = E = 0. Our necessary conditions are

(5.20h)



p′w − r′x − λqH = 0,

q′w − s′x − λpH = 0,

H′x + λ(ps − qr) = 0,

pu′x − qt′x = 0.

We write ω2 = A dx +C dw in the form

ω2 =
1
2

[(p + q)eλy + (p − q)e−λy]dx + 1
2

[(r + s)eλy + (r − s)e−λy]dw.

We see that either p+q , 0 or p−q , 0 on some open set because A , 0. Assume that p+q , 0 (the
other case is analogous). Taking a new variable x̄ = x̄(w, x) (instead of x) as a potential function of
the Pfaffian equation (p+ q)dx+ (r+ s)dw = 0, we can put r+ s = 0. Then (5.20h)1−3 are rewritten,
in the standard notation, as

(5.21h)


−r′x + p′w − λqH = 0,

r′x + q′w − λpH = 0,

H′x − λ(p + q)r = 0.

Here we choose φ = p+q as an arbitrary nonzero function such that (ln |φ|)′′wx , 0. By (5.21h)1,2
we get first H = (ln |φ|)′w/λ and hence h = H′x , 0 (hyperbolicity condition). Further, by (5.21h)3,
r = (ln |φ|)′′wx/(λ

2φ). Now (5.21h)1 means p′w + (ln |φ|)′w p = φ′w + r′x, which can be solved by the
standard method of “variation of constants”. Finally the function t is chosen as arbitrary and u is
calculated from (5.20h)4.

Theorem 5.7. The metrics of three-dimensional non-orthogonally foliated singular spaces of type
(H) belong, in the elliptic case, to one of the following two classes:
Class I. The metric is locally determined by an orthonormal coframe

(5.19e-1)


ω1 = [t cos(λy) + u sin(λy)]dw,

ω2 = [p cos(λy) + q sin(λy)]dx + s sin(λy)dw,

ω3 = dy + Hdw,

where H is an arbitrary function of the variables w and x such that HH′x , 0, p is any non-trivial
solution of the second order partial differential equation

p′′ww −
H′w
H

p′w −
HH′x

p2 p′x + λ
2H2 p +

HH′′xx

p
= 0,

q = p′w/(λH) and s = −H′x/(λp). Further, t can be chosen as an arbitrary function of the variables

w and x, and u =
∫

p′wt′x/(λpH) dx.
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Class II. The metric is locally determined by an orthonormal coframe

(5.19e-2)


ω1 = [cos(λy) + u sin(λy)]dw,

ω2 = sin(λy)dx + [ψ cos(λx) − φ sin(λx)] cos(λy)dw,

ω3 = dy + [φ cos(λx) + ψ sin(λx)]dw,

where u is an arbitrary function of the variables w and x, and φ = φ(w) and ψ = ψ(w) are arbitrary
functions of the variable w such that φ2 + ψ2 , 0.

Proof. The singularity condition α = 0 implies again D = E = 0. Our necessary conditions are
now

(5.20e)



p′w − r′x − λqH = 0,

q′w − s′x + λpH = 0,

H′x + λ(ps − qr) = 0,

pu′x − qt′x = 0.

Taking a new variable x̄ = x̄(w, x) as a potential function of the Pfaffian equation p dx + r dw = 0,
we can put r = 0. We distinguish two cases: p , 0 and p = 0.

Case I. The function p is nonzero on some open set. Let H be an arbitrary function of the
variables w and x such that HH′x , 0. Then, from (5.20e)1 with r = 0 and (5.20e)3, we obtain

(5.21e) q =
p′w
λH

, s = − H′x
λp

,

respectively. Substituting (5.21e) into (5.20e)2, we obtain

(5.22e) p′′ww −
H′w
H

p′w −
HH′x

p2 p′x + λ
2H2 p +

HH′′xx

p
= 0,

which is a second order partial differential equation for p. According to the Cauchy-Kowalewski
Theorem, the general solution of (5.22e) depends on two arbitrary functions of one variable. Now
the functions q and s are calculated by (5.21e). Finally let t be an arbitrary function of the variables
w and x. Then we obtain u from (5.20e)4 by integration.

Case II. The function p is identically zero on some open set. In this case we have q , 0 because
A , 0. The necessary conditions (5.20e) reduce to

(5.23e)



r′x + λqH = 0,

q′w − s′x = 0,

H′x − λqr = 0,

t′x = 0.

The equation (5.23e)2 means that q dx + s dw is an exact differential form. Let x̄ = x̄(w, x) be
a new variable such that dx̄ = q dx + s dw. Further, let w̄ = w̄(w) be a new variable satisfying

25



dw̄ = t dw. Then, taking the new system of coordinates (w̄, x̄, y) (which we denote again as (w, x, y))
we can make q = t = 1 and s = 0 in (5.1he). The equations (5.23e)1,3 read H′′xx + λ

2H = 0, hence
H = φ cos(λx)+ψ sin(λx), and from (5.23e)3 we get r = ψ cos(λx)−φ sin(λx), where φ = φ(w) and
ψ = ψ(w) are functions of the variable w such that φ2 + ψ2 , 0.

Remark. In Class I, if we choose the basic functions H and p as depending only on x, we can
obtain a family of metric in an explicit form.

5.2 The orthogonally foliated spaces of type (H)

For the metrics of type (H) it may also happen h = 0 everywhere (and thus H = 0 due to Propo-
sition 5.1), which means, according to Proposition 4.9, that the asymptotic foliations are mutually
orthogonal. This case was excluded in the previous section. As we see from (5.9), one of the
asymptotic distributions is given by the equation ω1 = 0. Consequently, the second must be given
by the equation ω2 = 0. Thus, the equation (5.10) implies that (C/A)′y = 0. Hence, there exists a
function µ = µ(w, x) of the variables w and x such that C = µA, and hence, in the hyperbolic case,

ω1 = [t cosh(λy) + u sinh(λy)]dw,

ω2 = [p cosh(λy) + q sinh(λy)](dx + µdw),

ω3 = dy

and, in the elliptic case,
ω1 = [t cos(λy) + u sin(λy)]dw,

ω2 = [p cos(λy) + q sin(λy)](dx + µdw),

ω3 = dy.

Introducing the new variable x̄ instead of x, where x̄ = x̄(w, x) is a potential function of the Pfaffian
equation dx + µ dw = 0, we get C = 0.

The conditions (5.4) and (5.7) now read (in the standard notation)

(5.24)


up′w − tq′w = 0,

pu′x − qt′x = 0.

Moreover, we must have pu − qt , 0, otherwise the metrics would be not of type (H). We put
φ = pu − qt and rewrite (5.24) in the equivalent form

(5.25)


up′w − tq′w = 0,

up′x − tq′x = φ
′
x,

pu − qt = φ.

Again we distinguish two geometric situations: the generic case and the singular case.
We first treat the generic case where the asymptotic distribution given by the equation ω1 = 0

is not totally geodesic. We remember that this requirement is equivalent to α , 0.
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Theorem 5.8. The metric of a three-dimensional orthogonally foliated generic space of type (H) is
locally determined, in the hyperbolic case, by an orthonormal coframe

(5.26h)


ω1 = [t cosh(λy) + u sinh(λy)]dw,

ω2 = [p cosh(λy) + q sinh(λy)]dx,

ω3 = dy

and, in the elliptic case, by an orthonormal coframe

(5.26e)


ω1 = [t cos(λy) + u sin(λy)]dw,

ω2 = [p cos(λy) + q sin(λy)]dx,

ω3 = dy,

where p and q are arbitrary functions of the variables w and x satisfying pq′w − qp′w , 0, and t and
u are calculated from p and q by

(5.27) t =
φp′w

pq′w − qp′w
, u =

φq′w
pq′w − qp′w

,

where

(5.28) |φ| = exp
(∫

p′xq′w − p′wq′x
pq′w − p′wq

dx
)
.

The local isometry classes are parameterized by two arbitrary functions of two variables modulo
two arbitrary functions of one variable and a real parameter.

Proof. The requirement α , 0 is equivalent to pq′w − qp′w , 0. Indeed, if α , 0, then, by (5.3) and
(5.5he), D = p′w or E = q′w is different from zero. Together with the condition pu − qt , 0 and
(5.25)1, this implies pq′w −qp′w , 0. Conversely, if pq′w −qp′w , 0, then at least one of the functions
D and E is nonzero, and hence α , 0.

From (5.25)1 and (5.25)3 we can then express t and u by the Cramer’s rule. We obtain (5.27).
Substituting from here in (5.25)2, we have a differential equation for the function φ:

φ′x =
p′xq′w − p′wq′x
pq′w − qp′w

φ,

which can be solved explicitly in the form (5.28).
The assertion about the local isometry classes can be proved exactly in the same way as we did

for non-orthogonally foliated spaces of type (H).
It remains the singular case where the asymptotic distribution given by the equation ω1 = 0 is

totally geodesic.

Theorem 5.9. The metric of three-dimensional orthogonally foliated singular spaces of type (H)
belong to the following two classes:
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Class I. The orthonormal coframe is given, in the hyperbolic case, by

(5.29h)


ω1 = [t cosh(λy) + u sinh(λy)]dw,

ω2 = [cosh(λy) + q sinh(λy)]dx,

ω3 = dy

and, in the elliptic case, by

(5.29e)


ω1 = [t cos(λy) + u sin(λy)]dw,

ω2 = [cos(λy) + q sin(λy)]dx,

ω3 = dy,

where q is an arbitrary function of the variable x, t is an arbitrary function of the variables w and

x, and the function u has the form u =
∫

qt′x dx.

Class II. The orthonormal coframe is given, in the hyperbolic case, by

(5.30h)


ω1 = [cosh(λy) + u sinh(λy)]dw,

ω2 = sinh(λy)dx,

ω3 = dy

and, in the elliptic case, by

(5.30e)


ω1 = [cos(λy) + u sin(λy)]dw,

ω2 = sin(λy)dx,

ω3 = dy,

where the function u is an arbitrary function of the variables w and x.

Proof. We have p′w = q′w = 0. Hence (5.24)1,2 reduce to only one equation

pu′x − qt′x = 0.

If p = p(x) , 0, then we can make p = 1 in (5.1he). Indeed, we choose a new variable x̄ = x̄(x)

satisfying dx̄ = p dx. Hence we have u =
∫

qt′x dx for arbitrary functions q = q(x) and t = t(w, x).

If p = 0, then necessarily q = q(x) , 0. Here, we can make q = 1 in (5.1he). Further, choosing
a new variable w̄ = w̄(w) satisfying dw̄ = t dw, we can make t = 1 in (5.1he). The function u is an
arbitrary function of the variables w and x.

Remark. (1) In all cases we shall ensure, by choosing proper initial conditions, that φ = pu−qt , 0.
(2) The asymptotic distribution given by the equation ω2 = 0 is totally geodesic if and only if

t′x = u′x = 0 in the above expression.
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5.3 The spaces of type (P)

The only asymptotic distribution on any space of type (P) is defined by the equation ω1 = 0.
According to Corollary 4.5 and Proposition 5.1, all we have to assume is H = x, h = 1 and the

parabolicity condition f = ξA with some nonzero function ξ = ξ(w, x) of the variables w and x.
Thus the only algebraic relations for the basic functions are

(5.31) λ(qr − ps) = 1

and

(5.32) t = ξp, u = ξq.

Now, we put

(5.33)


D = λ(p′xq − pq′x),

E = λ[pq′w − p′wq + λ(ϵp2 + q2)x].

(Here E is different for the hyperbolic case and for elliptic case). Taking use of (5.7) and (5.32), we
can rewrite (5.6) as

(5.34) ξD = ν.

We can also rewrite (5.4) as

(5.35) q D − p E = 0,

which means

λ(ps′x − qr′x) = E

or, due to (5.31),

(5.36) λ(q′xr − p′xs) = E.

Theorem 5.10. The metric of a three-dimensional foliated generic space of type (P) is given, in the
hyperbolic case, by

(5.37h)


ω1 = ξ[p cosh(λy) + q sinh(λy)]dw,

ω2 = [p cosh(λy) + q sinh(λy)]dx + [r cosh(λy) + s sinh(λy)]dw,

ω3 = dy + x dw

and, in the elliptic case, by

(5.37e)


ω1 = ξ[p cos(λy) + q sin(λy)]dw,

ω2 = [p cos(λy) + q sin(λy)]dx + [r cos(λy) + s sin(λy)]dw,

ω3 = dy + x dw,
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where p and q are arbitrary functions of the variables w and x, qp′x − pq′x , 0, and

(5.38)


r =

p′x − pE
D

, s =
q′x − qE

D
,

ξ =

[
p′w − r′x − λqx

pD

]1/2

=

[
q′w − s′x − ϵλpx

qD

]1/2

.

The local isometry classes are parameterized by two arbitrary functions of two variables modulo
two arbitrary functions of one variable.

Proof. According to (5.6), (5.34) and (5.33), α , 0 holds if and only if D , 0 or, equivalently,
qp′x − pq′x , 0.

The relations (5.31) and (5.36) form a system of linear algebraic equations for r and s with the
coefficients depending on p and q only. Hence we get the expression (5.38)1,2 by the Cramer’s rule.
Now, the equations (5.5he), (5.6) and (5.34) imply that ξD = D/(ξp) = E/(ξq), from which we can
determine ξ in the form (5.38)3. Because either p , 0 or q , 0, at least one expression for ξ is
correct. Let us notice that the functions p and q only have to satisfy certain differential inequalities
and thus p and q can still be considered as arbitrary functions of two variables.

The assertion about the local isometry classes can be proved exactly in the same way as we did
for the type (H).

Theorem 5.11. The metric of a three-dimensional foliated singular space of type (P) is given, in
the hyperbolic case, by

(5.39h-1)


ω1 = ξp cosh(λy)dw,

ω2 = p cosh(λy)dx + [r cosh(λy) + s sinh(λy)]dw,

ω3 = dy + x dw

with

(5.40h-1)


p = 1√

ψ + λ2x2
,

r = − ψ′x

2ψ
√
ψ + λ2x2

+ φ, s = −λ
√
ψ + λ2x2

or

(5.39h-2)


ω1 = ξq sinh(λy)dw,

ω2 = q sinh(λy)dx + [r cosh(λy) + s sinh(λy)]dw,

ω3 = dy + x dw

with

(5.40h-2)


q = 1√

ψ − λ2x2
,

r = λ
√
ψ − λ2x2 , s = − ψ′x

2ψ
√
ψ − λ2x2

+ φ
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and, in the elliptic case, by

(5.39e)


ω1 = ξp cos(λy)dw,

ω2 = p cos(λy)dx + [r cos(λy) + s sin(λy)]dw,

ω3 = dy + x dw,

with

(5.40e)


p = 1√

ψ − λ2x2
,

r = − ψ′x

2ψ
√
ψ − λ2x2

+ φ, s = −λ
√
ψ − λ2x2 ,

where ξ = ξ(w, x) is an arbitrary nonzero function of the variables w and x, and φ = φ(w) and
ψ = ψ(w) are arbitrary functions of the variable w.

Proof. The requirement α = 0 is equivalent to qp′x − pq′x = 0.
In case that p , 0 we see from (q/p)′x = 0 that q = κp for some function κ = κ(w) of the variable

w. In the hyperbolic case, taking a function θ = θ(w) of the variable w such that tanh θ = κ, we
consider new variables x̄ = x − θ′/λ and ȳ = y + θ/λ. In the coordinates (w, x̄, ȳ), the orthonormal
coframe (5.37h) is expressed as

ω1 = ξp
√

1 − κ2 cosh(λȳ)dw,

ω2 = p
√

1 − κ2 cosh(λȳ)dx̄ + [r̄ cosh(λȳ) + s̄ sinh(λȳ)]dw,

ω3 = dȳ + x̄ dw

with r̄ = r cosh θ − s sinh θ − p
√

1 − κ2 θ′′/λ and s̄ = s cosh θ − r sinh θ. In the elliptic case, taking
a function θ = θ(w) ∈ (−π/2, π/2) of the variable w such that tan θ = κ, we consider new variables
x̄ = x + θ′/λ and ȳ = y − θ/λ. In the coordinates (w, x̄, ȳ), the orthonormal coframe (5.37e) is
expressed as

ω1 = ξp
√

1 + κ2 cos(λȳ)dw,

ω2 = p
√

1 + κ2 cos(λȳ)dx̄ + [r̄ cos(λȳ) + s̄ sin(λȳ)]dw,

ω3 = dȳ + x̄ dw

with r̄ = r cos θ − s sin θ + p
√

1 + κ2 θ′′/λ and s̄ = s cos θ − r sin θ. Thus we can put q = 0 in
(5.37he) and we obtain (5.39h-1) and (5.39e), respectively. Then the equations (5.36), D = 0 and
(5.31) reduce to

(5.41)


sp′x = −ϵλp2x,

r′x = p′w,

λps = −1.
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The equations (5.41)1 and (5.41)3 imply p′x = ϵλ
2 p3x, hence we obtain (5.40h-1) and (5.40e) with

arbitrary functions φ = φ(w) and ψ = ψ(w) of the variable w.
If p = 0 identically, we have q , 0 because A , 0. The equations (5.36), E = 0 and (5.31)

reduce to

(5.42)


rq′x = λq2x,

s′x = q′w,

λqr = 1.

The equations (5.42)1 and (5.42)3 imply q′x = λ2 p3x, hence we obtain (5.40h-2) with arbitrary
functions φ = φ(w) and ψ = ψ(w) of the variable w. We notice that we obtain a new class of
metrics, (5.39h-2), in the hyperbolic case, but not in the elliptic case. Indeed, in the elliptic case,
taking a new variable ȳ = y + π/(2λ), we can reduce the second case p = 0 to the first one.

5.4 The spaces of type (Pℓ)

We are now left with the type (Pℓ) in which there are no singular solutions.

Theorem 5.12. The metric of a three-dimensional foliated space of type (Pℓ) is locally determined,
in the hyperbolic case, by an orthonormal coframe

(5.43h-1)


ω1 = ξ sinh(λy)dw,

ω2 = sinh(λy)dx,

ω3 = dy

or

(5.43h-2)


ω1 = ξ cosh(λy)dw,

ω2 = cosh(λy)dx,

ω3 = dy

and, in the elliptic case, by an orthonormal coframe

(5.43e)


ω1 = ξ sin(λy)dw,

ω2 = sin(λy)dx,

ω3 = dy,

where ξ = ξ(w, x) is a nonzero function of the variables w and x. The local isometry classes are
parameterized by the function ξ modulo two arbitrary functions of one variable.

Proof. According to Corollary 4.5, we have f = ξA, C = ζA and a0 = 0, and we get h = 0. We can
write due to (5.1he)

(5.44) t = ξp, u = ξq
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and

(5.45) r = ζp, s = ζq.

If we substitute (5.44) and h = 0 into the equation (5.7), we obtain

(5.46) p′xq − pq′x = 0.

Substituting in (5.4) from (5.3), and using (5.45) and (5.46), we get

(5.47) p′wq − pq′w = 0.

In case that q , 0, (5.46) and (5.47) imply that p/q is a constant, say a. We can express the
orthonormal coframe (1.8) in the form, in the hyperbolic case,

ω1 = ξq[a cosh(λy) + sinh(λy)]dw,

ω2 = q[a cosh(λy) + sinh(λy)](dx + ζdw),

ω3 = dy

and, in the elliptic case,
ω1 = ξq[a cos(λy) + sin(λy)]dw,

ω2 = q[a cos(λy) + sin(λy)](dx + ζdw),

ω3 = dy.

Taking a constant ω ∈ R such that tanhω = a in the hyperbolic case, and ω ∈ (−π/2, π/2) such that
tanω = a in the elliptic case, we obtain, in the hyperbolic case,

a cosh(λy) + sinh(λy) =
√

1 − a2 sinh(λy + ω)

and, in the elliptic case,

a cos(λy) + sin(λy) =
√

1 + a2 sin(λy + ω).

Hence, substituting the new variable ȳ = y + ω/λ, we obtain, in the hyperbolic case,

(5.48h)


ω1 = ξq

√
1 − a2 sinh(λȳ)dw,

ω2 = q
√

1 − a2 sinh(λȳ)(dx + ζdw),

ω3 = dȳ

and, in the elliptic case,

(5.48e)


ω1 = ξq

√
1 + a2 sin(λȳ)dw,

ω2 = q
√

1 + a2 sin(λȳ)(dx + ζdw),

ω3 = dȳ.
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Let us introduce the new variable x̄ = x̄(w, x) as a potential function of the Pfaffian equation dx +
ζdw = 0. Then we can write (5.48he) in the form, in the hyperbolic case,

ω1 = u sinh(λȳ)dw, ω2 = q̄ sinh(λȳ)dx̄, ω3 = dȳ

and, in the elliptic case,

ω1 = u sin(λȳ)dw, ω2 = q̄ sin(λȳ)dx̄, ω3 = dȳ.

Now, solving a first order linear partial differential equation, we can find a function θ = θ(w, x̄)
such that (cos θ)udw + (sin θ)q̄dx̄ is (locally) a total differential, say dX. Using a new orthonormal
coframe {ω̄1, ω̄2, ω3}, where ω̄1 = (sin θ)ω1 − (cos θ)ω2, ω̄2 = (cos θ)ω1 + (sin θ)ω2, and denoting
by W a potential function of the Pfaffian equation (sin θ)udw − (cos θ)q̄dx̄ = 0, we obtain, in the
hyperbolic case,

ω̄1 = ξ̄ sinh(λȳ)dW, ω̄2 = sinh(λȳ)dX

and, in the elliptic case,

ω̄1 = ξ̄ sin(λȳ)dW, ω̄2 = sin(λȳ)dX,

which gives (5.43h-1) or (5.43e) up to notation.
If now q = 0 identically, we obtain, in the hyperbolic case,

ω1 = ξp cosh(λy)dw, ω2 = p cosh(λy)(dx + ζdw), ω3 = dy

which can be reduced to the form (5.43h-2). In the elliptic case we get

ω1 = ξp cos(λy)dw, ω2 = p cos(λy)(dx + ζdw), ω3 = dy

and this is again reduced to (5.43e) after the substitution ȳ = y + π/(2λ).
Next, we look at the local isometry classes of metrics of the form (5.43h-1), (5.43h-2) or (5.43e).

Because of the geometric meaning of the foliation variable ȳ and the specific form of (5.43h-1),
(5.43h-2) or (5.43e), it follows easily that for two isometric metrics of the form (5.43h-1), (5.43h-2)
or (5.43e) the foliation variable will be the same, possibly up to sign. But then we see that the
problem of characterizing the local isometry classes of the metrics (5.43h-1), (5.43h-2) or (5.43e)
is (locally) the same as to classify the surfaces in E3 up to an isometry. This problem was solved (in
the analytic case) by E. Cartan: the set of all surfaces in E3 which are (locally) isometric to a fixed
generic surface M ⊂ E3 depend on two arbitrary functions of one variable ([4], Part 2, Problem 5).

5.5 Spaces whose scalar curvature is constant along principal geodesics

In [10] and [3], Chapter 6, one constructs a class of (singular) parabolic semi-symmetric spaces for
which the scalar curvature is constant along each principal geodesic. This cannot happen for the
pseudo-symmetric spaces of nonzero constant type as the following Theorem shows.

Theorem 5.13. Let (M, g) be a three-dimensional foliated pseudo-symmetric space, and let the
scalar curvature Sc(g) be constant along each principal geodesic. Then (M, g) is a non-elliptic
space of type (H) or an elliptic space of type (E).
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Proof. Because the scalar curvature Sc(g) is given, in the hyperbolic case, by

Sc(g) = 2k + 4c̃ = 2σ
f A
− 6λ2 =

2σ
f1 cosh(λy) + f2 sinh(λy) + f3

− 6λ2

and, in the elliptic case, by

Sc(g) = 2k + 4c̃ = 2σ
f A
+ 6λ2

=
2σ

f1 cos(2λy) + f2 sin(2λy) + f3
+ 6λ2,

our condition means that f1 = f2 = 0, and hence ∆′ = −ϵ4λ2 f32 due to (4.5). Hence, according to
Proposition 4.7, the assertion follows.

Remark. For some detailed study on our spaces whose scalar curvature Sc(g) is constant along
each principal geodesic, we refer to [14] and [13].

6 The quasi-explicit classification of spaces of elliptic type

The spaces of elliptic type are much more difficult to deal with because the coefficients A, f and C
in (1.8) cannot be expressed in general in the form of linear combinations of cosh(λy) and sinh(λy);
or of cos(λy) and sin(λy). We are not able to solve the classification problem explicitly, but we can
still prove the local isometry classes of metrics depend on essentially three arbitrary functions of
two variables. Also, we give an example of explicit family of metrics depending on two arbitrary
functions of two variables.

We see first that the functions a0 and φ0 are always nonzero on a space of type (E) (cf. (4.6)).
Also, we must have h , 0. (If h = 0, then b = c in (3.3) and hence ∆ ≥ 0 in Proposition 4.3.) From
(2.24he) and (2.5he) we see that

(6.1) ϵ(a1
2 − a3

2) + a2
2 < 0, ϵ(φ1

2 − φ3
2) + φ2

2 < 0,

and, from (4.5), we have

(6.2) ϵ( f12 − f32) + f22 < 0.

We start with the following simplification:

Proposition 6.1. Every metric g of type (E) can be expressed locally, using the convenient coordi-
nates and convenient coframe, in the form (1.8), where f2 = 0, a2 , 0 and b2 = 0.

The proof is a modification of that of Proposition 8.1 from [10] using the fact that f A/ f3 is
a Riemannian invariant (cf. (3.14he)). Notice that the two cases in Proposition 8.1 from [10] are
reduced to one case only. In fact, if f2 = a2 = 0, then, making substitution ȳ = y + 1, we have
ā2 , 0.

Now we study the “fine structure” of the partial differential equations

(A1) (Aα)′y + β
′
x = 0
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and

(A2) R′y − β′w = 0

with β , 0, that is, we shall write (A1) and (A2) as a system of partial differential equations for
functions of two variables only.

We substitute into (A1) the function Aα in the form

Aα = 1
2 f A

[
(A2)′w − 2(AC)′x +

AC
A2 (A2)′x − H(A2)′y

]
,

which follows from (1.12) and (1.10), and the function β in the form β = λa0/A2 (see (2.22)).
Taking the common denominator 2A4( f A)2 and using (2.6he), (2.23he) and (2.28he), respectively,
we obtain the numerator of the left-hand side of the equation (A1) as a linear combination of c3,
c2s, c2, cs, c, s and 1, where c = cosh(2λy) and s = sinh(2λy) in the hyperbolic case; c = cos(2λy)
and s = sin(2λy) in the elliptic case. Each coefficient of this linear combination depends on w and
x only, and thus it must vanish if (A1) is satisfied. This gives seven partial differential equations
which are linear with respect to a′0x, a′1x, a′2x, a′3x, V1, V2 and V3, where

(6.3)


V1 = a′1w − 2b′1x − 2λHa2,

V2 = a′2w − 2b′2x + ϵ2λHa1,

V3 = a′3w − 2b′3x.

Using the formula (2.24he) in the form

(6.4) a0
2 = −ϵ(a1

2 − a3
2) − a2

2

and its derivative

(6.5) a0a′0x = −ϵ(a1a′1x − a3a′3x) − a2a′2x,

we can eliminate the derivative a′0x in all equations. We obtain the final form of the equation (A1)
as the system of partial differential equations

(6.6)
3∑

i=1

a0Pi
αVi +

3∑
i=1

Qi
αa′ix = 0, α = 1, 2, . . . , 7,

where

P1
1 = 2a1a2 f3, P2

1 = (a1
2 − ϵa2

2) f3, P3
1 = −2a1a2 f1,

P1
2 = (a1

2 − ϵa2
2) f3, P2

2 = −2ϵa1a2 f3, P3
2 = −(a1

2 − ϵa2
2) f1,

P1
3 = 2a2a3 f3, P2

3 = (a1
2 − ϵa2

2) f1 + 2a1a3 f3, P3
3 = −2a2a3 f1,

P1
4 = a1a3 f3, P2

4 = −ϵa2(a1 f1 + a3 f3), P3
4 = −a1a3 f1,

P1
5 = 2a1a2 f3, P2

5 = −2a1a3 f1 − (ϵa2
2 + a3

2) f3, P3
5 = −2a1a2 f1,

P1
6 = (a2

2 + ϵa3
2) f3, P2

6 = −2a2a3 f1, P3
6 = −(a2

2 + ϵa3
2) f1,

P1
7 = 2a2a3 f3, P2

3 = −(ϵa2
2 + a3

2) f1, P3
7 = −2a2a3 f1,
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Q1
1 = −a0a2b3 f1 + a0a2b1 f3 + (a2

2 − ϵa3
2) f12,

Q1
2 = −a0(a1b3 − a3b1) f1 + a0a1b1 f3 + a1a2 f12,

Q1
3 = −a0a2b1 f1 − ϵa1a3 f12 + 2(a2

2 − ϵa3
2) f1 f3,

Q1
4 = −a0a3b1 f3 + a1a2 f1 f3,

Q1
5 = 2a0a2b1 f3 − (a2

2 − ϵa3
2) f32 + 2ϵa1a3 f1 f3,

Q1
6 = ϵa0a3b3 f3 + ϵa1a2 f32,

Q1
7 = a0a2b3 f3 + ϵa1a3 f32,

Q2
1 = −a0(a1b3 − a3b1) f1 + a0a1b1 f3 − a1a2 f12,

Q2
2 = ϵa0a2b3 f1 − ϵa0a2b1 f3 − (a1

2 − a3
2) f12,

Q2
3 = a0a1b1 f1 + 2a0a3b1 f3 − a2a3 f12 − 2a1a2 f1 f3,

Q2
4 = −(a1

2 − a3
2) f1 f3,

Q2
5 = −2a0a1b3 f1 − a0a3b3 f3 + a1a2 f32 + 2ϵa2a3 f1 f3,

Q2
6 = −a0a2b3 f1 + a0a2b1 f3 − (a1

2 − a3
2) f32,

Q2
7 = −a0a3b3 f1 − a0(a1b3 − a3b1) f3 + ϵa2a3 f32,

Q3
1 = −a0a2b1 f1 + ϵa1a3 f12,

Q3
2 = −a0a1b1 f1 − a2a3 f12,

Q3
3 = −2a0a2b3 f1 + (ϵa1

2 − a3
2) f12 + 2ϵa1a3 f1 f3,

Q3
4 = −a0a1b3 f1 − a2a3 f1 f3,

Q3
5 = a0a2b3 f3 − ϵa1a3 f32 + 2(ϵa1

2 + a2
2) f1 f3,

Q3
6 = −a0a3b3 f1 − ϵa0(a1b3 − a3b1) f3 − ϵa2a3 f1 f32,

Q3
7 = −a0a2b3 f1 + a0a2b1 f3 − (ϵa1

2 + a2
2) f32.

Next, we substitute into (A2) the function R in the form

R = 1
2 f A

[
( f 2 +C2)′x + H(h + (AC)′y) − AC

A2 (A2)′w
]
,

which we obtain from (1.13)1, (1.12) and (1.10), and the function β in the form β = λa0/A2. By the
same argument as that for the previous equation (A1), we obtain once more seven partial differential
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equations. They are now linear with respect to a′0w, a′1w, a′2w, a′3w, W1, W2 and W3, where

(6.7)



W1 = −ϵ 1
λ
φ′1x + 2λHb2,

W2 =
1
λ
φ′2x + 2ϵλHb1,

W3 =
1
λ
φ′3x + Hh.

Using (6.4) and the formula for a′0w similar to (6.5), we can also eliminate the derivative a′0w in all
equations. We obtain the final form of the equation (A2) as a system of partial differential equations
analogous to (6.6):

(6.8)
3∑

i=1

a0Pi
αWi −

3∑
i=1

Qi
αa′iw = 0, α = 1, 2, . . . , 7.

The following proposition will be crucial for reducing our partial differential equations to es-
sentially independent ones.

Proposition 6.2. The rank of the matrix
[
Pi
α, Qi

α

]
is at most two.

Proof. Since a2 , 0 and b2 = f2 = 0, we have from (2.51)

(6.9) φ4 = ϵ
λ(a1 f3 − a3 f1)

a2
,

and hence we have

(6.10)


b1 =

a2
2 f3 + ϵa1(a1 f3 − a3 f1)

a0a2
,

b3 =
a2

2 f1 + ϵa3(a1 f3 − a3 f1)
a0a2

.

Substituting from (6.10) for b1 and b3 in the entries of the matrix
[
Qi
α

]
, we see that

[
P3
α

]
= − f1

f3

[
P1
α

]
,

[
Q1
α

]
= ϵ

a1 f3 − a3 f1
a2

[
P1
α

]
− ϵ f3

[
P2
α

]
,

[
Q2
α

]
= − f12 − f32

f3

[
P1
α

]
+ ϵ

a1 f3 − a3 f1
a2

[
P2
α

]
,

[
Q3
α

]
= −ϵ f1(a1 f3 − a3 f1)

a2 f3

[
P1
α

]
+ ϵ f1

[
P2
α

]
,

which prove the assertion.

Corollary 6.3. Each system of partial differential equations (6.6) or (6.8) contains at most two
linearly independent equations.
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Thus, the equations (A1) and (A2) are essentially reduced to four partial differential equations
in two variables. We shall see later that, as in [10], we can make an additional reduction to only two
equations (one of the form (6.6) and one of the form (6.8)).

Proposition 6.4. The following algebraic formulas are consequences of the algebraic equations
from Theorem 2.8 and of the assumptions of Proposition 6.1:

(6.11) φ1 = νa1, φ2 = ϵνa2, φ3 = −ϵνa3,

where

(6.12) ν =
λ[a2

2( f12 − f32) − ϵ(a1 f3 − a3 f1)2]
a02a22 , ν = ϵ

φ0

a0
,

(6.13) a0
2 = −ϵ(a1

2 − a3
2) − a2

2.

Further, f2 = 0 and

(6.14)


b1 =

a2
2 f3 + ϵa1(a1 f3 − a3 f1)

a0a2
, b2 = 0,

b3 =
a2

2 f1 + ϵa3(a1 f3 − a3 f1)
a0a2

,

(6.15) h = −ϵ 2λ(a1 f1 − a3 f3)
a0

, φ4 = ϵ
λ(a1 f3 − a3 f1)

a2
, φ5 = 2φ4.

Conversely, if a1, a2, a3, f1 and f3 are arbitrary functions, and if the other basic functions are
defined as above, then all algebraic equations of Theorem 2.8 hold.

Proof. We show only the necessity of (6.11)–(6.15). The sufficiency will be proved by the direct
check. The equations (2.44)3 and (2.44)5 imply a1φ2 − ϵa2φ1 = 0 and a2φ3 + a3φ2 = 0. Hence
the formulas (6.11) hold with some function ν = ν(w, x) of the variables w and x. Substituting
(6.11) and (6.10)1 into (2.44)1, and using (2.24he), we obtain (6.12)1. The formula (6.13) is a direct
consequence of (2.24he). The formulas (6.14)1,3 and (6.15)2 follow from b2 = f2 = 0 as shown in
the proof of Proposition 6.2. Next, from (6.11), (2.5he) and (2.24he), we have φ0

2 = ν2a0
2. Here,

the relation (4.5) implies that ϵ( f12 − f32) is negative because the discriminant ∆′ is negative, hence
ϵν is negative. On the other hand, (4.4) together with (4.5) implies that a0φ0 is negative. Hence we
obtain (6.12)2. We obtain (6.15)1 from (2.47) and f2 = 0. Finally, (6.15)3 is the same as (2.48).

We need later the relation

(6.16) ν =
λ( f1b3 − f3b1)

a0a1
,

which follows from (6.14) and (6.12).
Now let us return to the system of partial differential equations (6.6) and (6.8). Specifying

Corollary 6.3, we see easily that the system (6.6) reduces to two partial differential equations

(6.17) a0V2 − ϵ f3a′1x + ϵ
a1 f3 − a3 f1

a2
a′2x − f1a′3x = 0
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and

(6.18)

a0 f3V1 +
a0(a1 f3 − a3 f1)

a2
V2 − a0 f1V3

+

ϵ ( a1 f3 − a3 f1
a2

)2

−
(

f12 − f32
) a′2x = 0.

The system (6.8) reduces to two analogous equations

(6.19) a0W2 + ϵ f3a′1w − ϵ
a1 f3 − a3 f1

a2
a′2w + f1a′3w = 0

and

(6.20)

a0 f3W1 +
a0(a1 f3 − a3 f1)

a2
W2 − a0 f1W3

−
ϵ ( a1 f3 − a3 f1

a2

)2

−
(

f12 − f32
) a′2w = 0.

Using (6.3), (6.7), (6.11), (6.14) and (6.16), we see, after lengthy but routine calculations, that
(6.18) and (6.20) are consequences of (6.17) and (6.19).

Substituting (6.3)2 and (6.7)2 into (6.17) and (6.19), respectively, and using (6.11)2, we have

(6.21)


a0a′2w + ϵ2λHa0a1 − ϵa2 f3

(
a1

a2

)′
x
+ ϵa2 f1

(
a3

a2

)′
x
= 0,

a0(νa2)′x − 2λ2Ha0b1 + λa2 f3

(
a1

a2

)′
w
− λa2 f1

(
a3

a2

)′
w
= 0.

Further, due to (6.15)1, we have the relation

(6.22) 2λ(a1 f1 − a3 f3) = −ϵa0H′x.

Introducing new functions u = u(w, x) and v = v(w, x) of the variables w and x such that

(6.23) a1 = ua2, a3 = va2, −ϵ(u2 − v2) > 0,

we rewrite (6.21) in the form

(6.24)


a0a′2w + ϵ2λHa0a1 − ϵa2 f3u′x + ϵa2 f1v′x = 0,

a0(νa2)′x − 2λ2Ha0b1 + λa2 f3u′w − λa2 f1v′w = 0.

Here, from (6.12)–(6.14), we get

(6.25)



a0 =
√
−ϵ(u2 − v2) − 1 a2,

b1 =
f3 + ϵu(u f3 − v f1)√

u2 − v2 − 1
,

ν =
λ
[
f12 − f32 − ϵ (u f3 − v f1)2

]
(
u2 − v2 − 1

)
a22 ,
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where we normalize the signs of a2 and a0 to make them positive.
Let now u, v and H be arbitrary analytic functions. Substituting for a0 from (6.25)1 into (6.22)

and into (6.24)1, and solving them with respect to f1 and f3, we can express f1 and f3 in the form

(6.26)


f1 = g1a′2w + g2a2 + g3,

f3 = h1a′2w + h2a2 + h3,

where gi’s and hi’s are known functions. Substituting (6.26) into (6.24)2 which has been trans-
formed by (6.25), we obtain a partial differential equation of the form

(6.27) a′′2wx = Ψ(a′2w, a
′
2x, a2,w, x),

where Ψ is a fixed analytic function of five variables. The general solution of (6.27) depends on
two arbitrary (analytic) functions of one variable. Thus, the generic family of metrics of type (E)
depends on three arbitrary functions of two variables, namely, u, v and H.

Now, we can go further and prove that even the local isometry classes of our metrics still depend
essentially on three functions. The proof is a modification of that of Theorem 8.5 from [10]. We use
the fact that f A/ f3 is a Riemannian invariant (see (3.14he)) and that the hyperbolic cosine function
and the cosine function are even functions.

Theorem 6.5. The local isometry classes of metrics of type (E) are parameterized by three arbitrary
functions of two variables modulo two arbitrary functions of one variable.

The equation (6.27) can not be solved explicitly, in general. Yet, we give here an explicit family
of the metrics of type (E).

Example 6.6. Consider the “singular” case a2 = 0 of Proposition 6.4. Then we have

(6.28)


φ1 = νa1, φ2 = a2 = 0, φ3 = −ϵνa3,

φ0 = ϵνa0, φ5 = 2φ4

and

(6.29) b2 = f2 = 0.

From (2.45)2 we see that there is a function ξ = ξ(w, x) of the variables w and x such that

(6.30) f1 = ξa1, f3 = ξa3.

Hence, using (6.22) and (2.51), we have

(6.31) a0h = −ϵ2λξ(a1
2 − a3

2),

(6.32) b1 =
a1φ4

λa0
, b3 =

a3φ4

λa0
.

Finally, we have

(6.33) a0
2 = −ϵ(a1

2 − a3
2),
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and, from (2.43)1 or (2.44)1, we deduce

(6.34)
φ4

2

λa02 + λξ
2 = −ϵν.

Here a1, a3, ξ and φ4 are arbitrary functions of the variables w and x. Conversely, if a1, a3, ξ and
φ4 are arbitrary functions of the variables w and x, and if the other basic functions are given by
(6.28)–(6.34), then all algebraic equations mentioned in Theorem 2.8 are satisfied.

In addition, from (6.31) and (6.33), we get

(6.35) h = 2λξa0, h = H′x.

Further, a careful check shows that the system of partial differential equations (6.6) and (6.8) can
be now reduced, instead of the form (6.21), to the form

(6.36) a0V2 − ϵ( f3a′1x − f1a′3x) = 0,

(6.37) a0W2 + ϵ( f3a′1w − f1a′3w) = 0.

All other partial differential equations are consequences of (6.36) and (6.37). Putting U = a3/a1,
we can rewrite (6.36) and (6.37) in the form

(6.38) 2λHa0 + ξa1U′x = 0,

(6.39) 2Hφ4 + ξa1U′w = 0.

Then we have the following explicit family of solutions satisfying the equations (6.38) and (6.39)
and the condition (6.35). Choose U and H as arbitrary functions of the variables w and x, and put

(6.40)


a1 = −ϵ

hU′x
4λ2H(U2 − 1)

, a3 = a1U, a0 = a1
√
ϵ(U2 − 1) ,

ξ = − 2λH
√
ϵ(U2 − 1)
U′x

, φ4 = −
hU′w

4λH
√
ϵ(U2 − 1)

, h = H′x.

Here we always assume U′x , 0 and ϵ(U2 − 1) > 0. (Also, we normalize the signs of a1, a3 and a0
to make them all positive.) Then the function ν is calculated from (6.34) and remaining coefficients
are given by (6.28)–(6.30) and (6.32). This defines the wanted class of metrics.
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[21] Z. I. Szabó, Structure theorems on Riemannian manifolds satisfying R(X, Y) · R = 0 II, Global
version, Geom. Dedicata 19(1985), 65–108.

[22] Z. I. Szabó, Classification and construction of complete hypersurfaces satisfying R(X,Y) · R =
0, Acta. Sci. Math.(Hung.) 47(1984), 321–348.
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