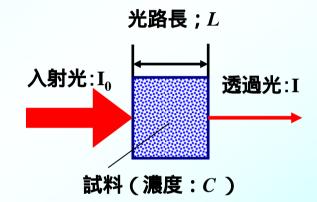
微量ガス検出システムの開発

ーキャビティーリングダウン分光法・ 光音響分光法ー

広島市立大学 情報科学部情報機械システム工学科 情報材料 1 講座

中野幸夫・石渡 孝


吸収法とは

吸収法:

被検出分子による光の吸収による光の強度の減少の測定

ランベルト・ベールの法則: 光の減少量は吸収物質の濃度と 光路長に以下の関係がある。

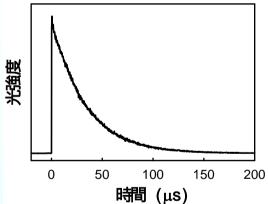
$$\log(I_0/I) = \varepsilon CL$$
 ε : モル吸光係数

光路長を伸ばすことができれば感度上昇

従来の吸収法

キャピティーリングダウン分光法

光路長: 0.01 - 10 m

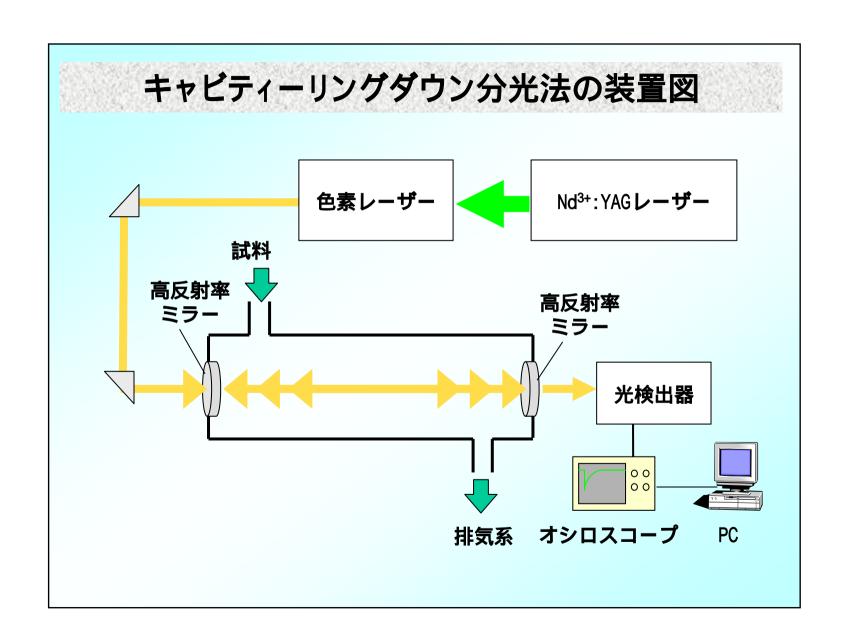

光路長:1,000 - 10,000 m

キャピティーリングダウン分光法の原理

キャビティーリングダウン分光法:

高反射率ミラーで構成された光学キャビティー間を検出光が往復することにより、数~数十kmの有効光路長を得ることができる。それ故、 従来の吸収法の数千倍感度が高い。

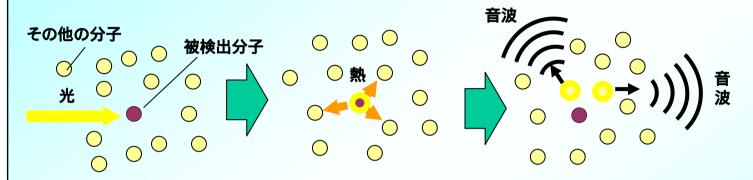
 $\mathbf{I}(t) = \mathbf{I}_0 \exp(-t/\tau) = \mathbf{I}_0 \exp(-t/\tau_0 - \sigma nct)$


τ₀: 真空でのリングダウンレイト

n: 被検出物質の濃度

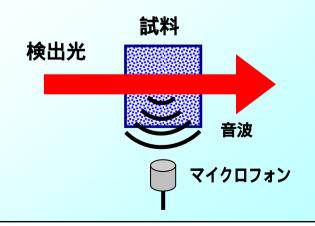
σ: 吸収断面積

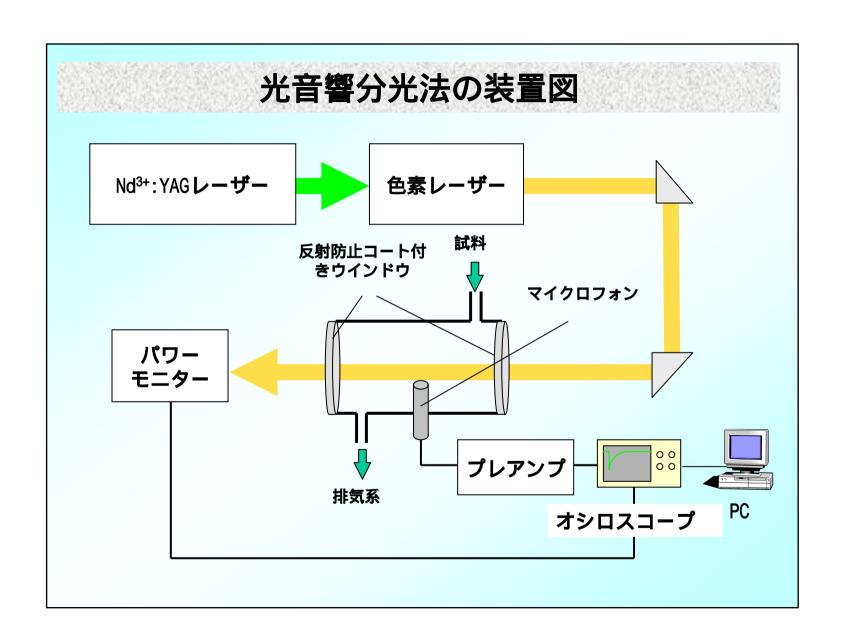
c: 光速


図 実測されたリングダウンシグナル。このキャピティー内の光パルス滞在時間は33µsであり、実効光路長として10 kmになっていることがわかる。

キャビティーリングダウン分光法の利点

利点	具体例	
高感度	吸光度が 10 ⁻⁸ / pathまで測定可能	
高定量性	検出用レーザーの光強度の変動に影響さ れない	
高選択性	目的の被検出物質のみの測定が可能であ る	
広い圧力範囲	分子線から常圧まで使用可能	
高い波長分解能	検出用レーザーの線幅により決定	

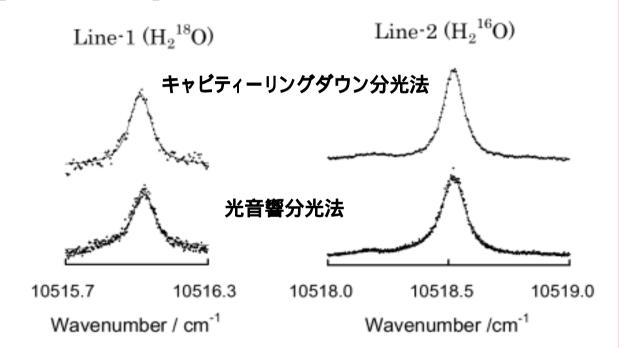

光音響分光法の原理



光による被検出分子の励起

励起された被検出分子から周り の分子へのエネルギー移動 エネルギーを受け取った分子 の運動により音波発生

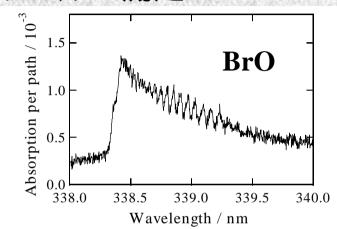
検出したい化学種の入った試料室に光照射を行う、そこで発生する音波をマイクロフォンで検出することにより、被検出分子の濃度をしることができる。

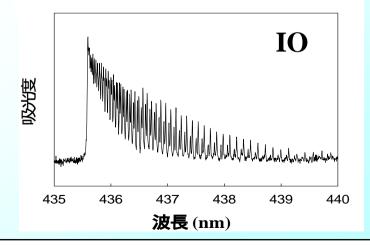


水の同位体測定

水の同位対比:

$$H_2^{18}O = 0.2\%, H_2^{16}O = 99.8\%$$

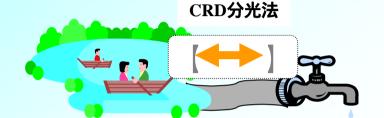

キャピティーリングダウン分光法、光音響分光法ともに実際の水の中に存在する微量な同位体(H₂180)の検出も可能である。


キャピティーリングダウン分光法による 大気微量ラジカルの測定

微量ガス	大気中における 一般的な濃度	
BrO	0.5-2 pptV	
Ю	3-6 pptV	

1 pptV = 0.0000000001%

キャピティーリングダウン分 光法を用いることにより、大 気中に微量しか存在しない ラジカルの検出も可能であ る

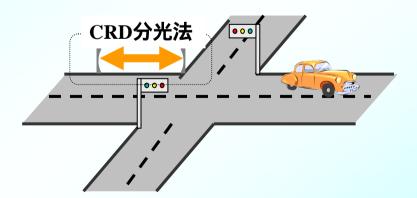


本研究で測定可能な大気微量物質の一例

被検出分子	対流圏における濃度 (ppb)	検出波長	検出用レーザー
NO ₂	0.02 – 1000	355, 488, 515 nm	YAGレーザー、Arイオンレーザー
NO ₃	0.4	600 – 670, 633 nm	半導体レーザー、He-Neレーザー
HNO_2	10	355 nm	YAGレーザー
CH ₂ O	0.5 – 75	250 – 350 nm	色素レーザー(2倍波)
		3596 nm	半導体レーザー
SO ₂	1 – 100	280 – 320 nm	色素レーザー (2倍波)
		7353 nm	半導体レーザー
O ₃	80	200 – 300 nm	色素レーザー (2倍波)
		9524 nm	半導体レーザー
ОН	5 x 10 ⁻⁵	308 nm	エキシマーレーザー
CIO	0.4	266 nm	YAGレーザー
BrO	0.3	355 nm	YAGレーザー
N_2O	310	7996 nm	半導体レーザー
H_2O_2	<1	7778 nm	半導体レーザー
微粒子	10 - 10 ⁶ cm- ³	266, 355, 532, 1064 nm	YAGレーザー

ショートタームで企業に共同研究できるテーマ

水質管理



生活空間の空気成分 の監視

NOx検出

環境ホルモンの検出

